1
|
Liu S, Feng X, Zhang H, Li P, Yang B, Gu Q. Decoding bacterial communication: Intracellular signal transduction, quorum sensing, and cross-kingdom interactions. Microbiol Res 2025; 292:127995. [PMID: 39657399 DOI: 10.1016/j.micres.2024.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This review provides a comprehensive analysis of the intricate architecture of bacterial sensing systems, with a focus on signal transduction mechanisms and their critical roles in microbial physiology. It highlights quorum sensing (QS), quorum quenching (QQ), and quorum sensing interference (QSI) as fundamental processes driving bacterial communication, influencing gene expression, biofilm formation, and interspecies interactions. The analysis explores the importance of diffusible signal factors (DSFs) and secondary messengers such as cAMP and c-di-GMP in modulating microbial behaviors. Additionally, cross-kingdom signaling, where bacterial signals impact host-pathogen dynamics and ecological balance, is systematically reviewed. This review introduces "signalomics", an novel interdisciplinary framework integrating genomics, proteomics, and metabolomics to offer a holistic framework for understanding microbial communication and evolution. These findings hold significant implications for various domains, including food preservation, agriculture, and human health.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xujie Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Hangjia Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Cui LF, Shen R, Song XR, Shi Y, Zhao Z, Huang Y. Identification and characterization of 16 tripartite motif-containing proteins from Takifugu obscurus. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110032. [PMID: 39566670 DOI: 10.1016/j.fsi.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Tripartite motif-containing (TRIM) proteins play important roles in apoptosis, development, autophagy, and innate immunity in vertebrates. In this study, a total of 16 TRIM genes were cloned and identified from obscure puffer Takifugu obscurus. Multiple alignment results showed that most of the deduced ToTRIM proteins contained three typical motifs, a really interesting new gene (RING) zinc-finger domain, one B-box, and a coiled-coil domain, which together formed the TRIM motif found in this large family of proteins. The carboxyl terminus of ToTRIMs is architecturally unique, with frequent examples being the ADP ribosylation factor-like domain, the B30.2 (PRY-SPRY) domain, the fibronectin type III domain, and the pleckstrin homology domain. Phylogenetic analysis revealed that 16 ToTRIMs were evolutionarily closely related to their counterparts in other selected vertebrates. Tissue distribution analysis showed that the mRNA transcripts of most ToTRIM genes were constitutively expressed in all tissues examined, with relatively high expression in immune tissues. After infection with Vibrio harveyi, the expression levels of 16 ToTRIM genes in the kidney and liver were significantly upregulated, and their responses over time varied. Taken together, our results suggested that ToTRIM genes are involved in the antibacterial immune responses of T. obscurus, which is expected to provide new insights into the functional characteristics of TRIMs in teleost fish.
Collapse
Affiliation(s)
- Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Rui Shen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
3
|
Wang L, Lu X, Xing Z, Teng X, Wang S, Liu T, Zheng L, Wang X, Qu J. Macrogenomics Reveals Effects on Marine Microbial Communities during Oplegnathus punctatus Enclosure Farming. BIOLOGY 2024; 13:618. [PMID: 39194557 DOI: 10.3390/biology13080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
(1) Background: Laizhou Bay is an important aquaculture area in the north of China. Oplegnathus punctatus is one of the species with high economic benefits. In recent years, the water environment of Laizhou Bay has reached a mild eutrophication level, while microorganisms are an important group between the environment and species. In this study, we evaluated alterations in environmental elements, microbial populations, and antibiotic resistance genes (ARGs) along with their interconnections during Oplegnathus punctatus net culture. (2) Methods: A total of 142 samples from various water layers were gathered for metagenome assembly analysis. Mariculture increases the abundance of microorganisms in this culture area and makes the microbial community structure more complex. The change had more significant effects on sediment than on seawater. (3) Results: Certain populations of cyanobacteria and Candidatus Micrarchaecta in seawater, and Actinobacteria and Thaumarchaeota in sediments showed high abundance in the mariculture area. Antibiotic resistance genes in sediments were more sensitive to various environmental factors, especially oxygen solubility and salinity. (4) Conclusions: These findings highlight the complex and dynamic nature of microorganism-environment-ARG interactions, characterized by regional specificity and providing insights for a more rational use of marine resources.
Collapse
Affiliation(s)
- Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao 266071, China
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tianyi Liu
- College of Life Science, Yantai University, Yantai 264005, China
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Trotsko N. Thiazolidin-4-Ones as a Promising Scaffold in the Development of Antibiofilm Agents-A Review. Int J Mol Sci 2023; 25:325. [PMID: 38203498 PMCID: PMC10778874 DOI: 10.3390/ijms25010325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Thiazolidin-4-ones have a broad range of medical and clinical implementation, which is important for pharmaceutical and medicinal chemistry. This heterocyclic core has been reported to possess a diversity of bioactivities, including antimicrobial and antibiofilm-forming potential. The resistance of biofilms to antibiotics or disinfectants is a serious medical problem. Therefore, there is a natural need to discover new effective structures with properties that inhibit biofilm formation. This review aims to analyze the antibiofilm features of thiazolidin-4-ones described in the literature over the last two decades. The information gathered in this review could benefit the rational design of new effective antibiofilm small molecules with thiazolidin-4-one cores.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Santos RA, Cardoso C, Pedrosa N, Gonçalves G, Matinha-Cardoso J, Coutinho F, Carvalho AP, Tamagnini P, Oliva-Teles A, Oliveira P, Serra CR. LPS-Induced Mortality in Zebrafish: Preliminary Characterisation of Common Fish Pathogens. Microorganisms 2023; 11:2205. [PMID: 37764049 PMCID: PMC10535040 DOI: 10.3390/microorganisms11092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Disease outbreaks are a common problem in aquaculture, with serious economic consequences to the sector. Some of the most important bacterial diseases affecting aquaculture are caused by Gram-negative bacteria including Vibrio spp. (vibriosis), Photobacterium damselae (photobacteriosis), Aeromonas spp. (furunculosis; haemorrhagic septicaemia) or Tenacibaculum maritimum (tenacibaculosis). Lipopolysaccharides (LPS) are important components of the outer membrane of Gram-negative bacteria and have been linked to strong immunogenic responses in terrestrial vertebrates, playing a role in disease development. To evaluate LPS effects in fish, we used a hot-phenol procedure to extract LPS from common fish pathogens. A. hydrophila, V. harveyi, T. maritimum and P. damselae purified LPS were tested at different concentrations (50, 100, 250 and 500 µg mL-1) at 3 days post-fertilisation (dpf) Danio rerio larvae, for 5 days. While P. damselae LPS did not cause any mortality under all concentrations tested, A. hydrophila LPS induced 15.5% and V. harveyi LPS induced 58.3% of zebrafish larvae mortality at 500 µg mL-1. LPS from T. maritimum was revealed to be the deadliest, with a zebrafish larvae mortality percentage of 80.6%. Analysis of LPS separated by gel electrophoresis revealed differences in the overall LPS structure between the bacterial species analysed that might be the basis for the different mortalities observed.
Collapse
Affiliation(s)
- Rafaela A. Santos
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Cláudia Cardoso
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Neide Pedrosa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Gabriela Gonçalves
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Jorge Matinha-Cardoso
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Filipe Coutinho
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - António P. Carvalho
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Paula Tamagnini
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aires Oliva-Teles
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cláudia R. Serra
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Wu YX, Hu SY, Lu XJ, Hu JR. Identification and characterization of two novel antimicrobial peptides from Japanese sea bass (Lateolabrax japonicus) with antimicrobial activity and MO/MФ activation capability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104726. [PMID: 37149238 DOI: 10.1016/j.dci.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Piscidins participate in the innate immune response of fish, which aims to eliminate recognized foreign microbes and restore the homeostasis of immune system. We characterized two piscidin-like antimicrobial peptides (LjPL-3 and LjPL-2) isolated from Japanese sea bass (Lateolabrax japonicus). LjPL-3 and LjPL-2 showed different expression patterns in tissues. After Vibrio harveyi infection, the mRNA expression of LjPL-3 and LjPL-2 was upregulated in the liver, spleen, head kidney, and trunk kidney. The synthetic mature peptides LjPL-3 and LjPL-2 exhibited different antimicrobial spectra. Furthermore, LjPL-3 and LjPL-2 treatments decreased inflammatory cytokine production while promoting chemotaxis and phagocytosis in monocytes/macrophages (MO/MФ). LjPL-2, but not LjPL-3, displayed bacterial killing capability in MO/MФ. LjPL-3 and LjPL-2 administration increased Japanese sea bass survival after V. harveyi challenge, which was accompanied by a decline in bacterial burden. These data suggested that LjPL-3 and LjPL-2 participate in immune response through direct bacterial killing and MO/MФ activation.
Collapse
Affiliation(s)
- Yi-Xin Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shuai-Yue Hu
- Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jian-Rao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
7
|
Zhang Y, Lin M, Qin Y, Lu H, Xu X, Gao C, Liu Y, Luo W, Luo X. Anti-Vibrio potential of natural products from marine microorganisms. Eur J Med Chem 2023; 252:115330. [PMID: 37011553 DOI: 10.1016/j.ejmech.2023.115330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The emergence of drug-resistant Vibrio poses a serious threat to aquaculture and human health, thus there is an urgent need for the discovery of new related antibiotics. Given that marine microorganisms (MMs) are evidenced as important sources of antibacterial natural products (NPs), great attention has been gained to the exploration of potential anti-Vibrio agents from MMs. This review summarizes the occurrence, structural diversity, and biological activities of 214 anti-Vibrio NPs isolated from MMs (from 1999 to July 2022), including 108 new compounds. They were predominantly originated from marine fungi (63%) and bacteria (30%) with great structural diversity, including polyketides, nitrogenous compounds, terpenoids, and steroids, among which polyketides account for nearly half (51%) of them. This review will shed light on the development of MMs derived NPs as potential anti-Vibrio lead compounds with promising applications in agriculture and human health.
Collapse
|
8
|
Chen Y, Cao B, Zheng W, Xu T. ACKR4a induces autophagy to block NF-κB signaling and apoptosis to facilitate Vibrio harveyi infection. iScience 2023; 26:106105. [PMID: 36843837 PMCID: PMC9947386 DOI: 10.1016/j.isci.2023.106105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Autophagy and apoptosis are two recognized mechanisms of resistance to bacterial invasion. However, bacteria have likewise evolved the ability to evade immunity. In this study, we identify ACKR4a, a member of an atypical chemokine receptor family, as a suppressor of the NF-κB pathway, which cooperates with Beclin-1 to induce autophagy to inhibit NF-κB signaling and block apoptosis, facilitating Vibrio harveyi infection. Mechanistically, V. harveyi-induced Ap-1 activates ACKR4a transcription and expression. ACKR4a forms a complex with Beclin-1 and MyD88, respectively, inducing autophagy and transporting MyD88 into the lysosome for degradation to suppress inflammatory cytokine production. Meanwhile, ACKR4a-induced autophagy blocks apoptosis by inhibiting caspase8. This study proves for the first time that V. harveyi uses both autophagy and apoptosis to evade innate immunity, suggesting that V. harveyi has evolved the ability to against fish immunity.
Collapse
Affiliation(s)
- Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Baolan Cao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Corresponding author
| |
Collapse
|
9
|
Gupta DS, Kumar MS. The implications of quorum sensing inhibition in bacterial antibiotic resistance- with a special focus on aquaculture. J Microbiol Methods 2022; 203:106602. [PMID: 36270462 DOI: 10.1016/j.mimet.2022.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
The aquaculture industry is an expanding and demanding industry and due to an increase in urbanization, with rise in income of developing countries population, it offers to provide a sustainable food supply. However, the industry is facing a number of challenges, out of which few needs to be tackled immediately to maximise the productivity. An upcoming problem is the emergence of antibiotic resistant pathogens due to the unchecked use of antibiotics in aquaculture and human clinical practices. A wide variety of aquatic pathogens such as Edwardsiella, Vibrio, and Aeromonas spp. use quorum sensing (QS) systems, a regulatory process involving cell communication via signalling molecules for the collective function of pathogens which regulates the genes expression including virulent genes. Quorum sensing results in bacterial biofilms formation, which leads to their reduced susceptibility towards antimicrobial agents. The usage of quorum sensing inhibitors (QSIs) has been proposed as an attractive strategy to tackle this problem. Due to the modulation of virulence genes expression, QSIs can be used as novel and viable approach to overcome antibiotic resistance in aquaculture. In this review, we direct our attention to the quorum sensing phenomenon and its viability as a target pathway for tackling the ever-growing problem of antimicrobial resistance in aquaculture. This review also provides a concise compilation of the currently available QSIs and investigates possible natural sources for quorum quenching.
Collapse
Affiliation(s)
- Dhruv S Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'(S) NMIMS, Vile Parle (w), Mumbai 400056, India
| | - Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'(S) NMIMS, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
10
|
Chen J, Lu Y, Ye F, Zhang H, Zhou Y, Li J, Wu Q, Xu X, Wu Q, Wei B, Zhang H, Wang H. A Small-Molecule Inhibitor of the Anthranilyl-CoA Synthetase PqsA for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0276421. [PMID: 35856709 PMCID: PMC9430567 DOI: 10.1128/spectrum.02764-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
One of the challenges associated with the treatment of Pseudomonas aeruginosa infections is the high prevalence of multidrug resistance (MDR). Since conventional antibiotics are ineffective at treating such bacterial infections, innovative antibiotics acting upon novel targets or via mechanisms are urgently required. In this study, we identified a quorum sensing inhibitor (QSI), norharmane, that uniquely shows weak antibacterial activity but strongly inhibits pyocyanin production and biofilm formation of MDR P. aeruginosa. Biophysical experiments and molecular docking studies showed that norharmane competes with anthraniloyl-AMP for anthranilyl-CoA synthetase PqsA of P. aeruginosa at the ligand-binding pocket, which is not exploited by current inhibitors, thereby altering transcription regulatory activity. Moreover, norharmane exhibits synergy with polymyxin B. This synergism exhibits a high killing rate, low probability of resistance selection, and minimal cytotoxicity. Notably, norharmane can effectively boost polymyxin B activity against MDR P. aeruginosa-associated infections in animal models. Together, our findings provide novel insight critical to the design of improved PqsA inhibitors, and an effective combination strategy to overcome multiantibiotic bacterial resistance using conventional antibiotics and QSIs. IMPORTANCE Pseudomonas aeruginosa is a dominant hospital-acquired bacterial pathogen typically found in immunocompromised individuals. It is particularly dangerous for patients with chronic lung diseases and was identified as a serious threat for patients in the 2019 Antimicrobial Resistance Threats report (https://www.cdc.gov/drugresistance/biggest-threats.html). In this study, we used activity-based high-throughput screening to identify norharmane, a potent and selective inhibitor of P. aeruginosa PqsA, which is a well-conserved master quorum sensing (QS) regulator in multidrug resistant (MDR) P. aeruginosa. This compound competitively binds anthranilyl-CoA synthetase PqsA at the anthraniloyl-AMP binding domain, which has not been exploited by known inhibitors. Remarkably, norharmane can significantly block the production of the virulence factor, pyocyanin (87%), and biofilm formation (80%) in MDR P. aeruginosa. Furthermore, norharmane is capable of augmenting polymyxin B activity against MDR P. aeruginosa in cell cultures and animal models. Taken together, these results suggest that norharmane may be an effective adjuvant for combating multiantibiotic bacterial resistance.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongfang Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yonglie Zhou
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Jiangtao Li
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xuewei Xu
- Second Institute of Oceanography, MNR, Hangzhou, China
| | - Qihao Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|