1
|
da Gama Oliveira V, Muxfeldt M, Muniz da Paz M, Silva Coutinho M, Eduardo dos Santos R, Diniz da Silva Ferretti G, Ferraz da Costa DC, Fonseca Regufe P, Lelis Gama I, da Costa Santos Boechat F, Silva Lima E, Ferreira VF, de Moraes MC, Bastos Vieira de Souza MC, Netto Batalha P, Pereira Rangel L. Naphthoquinone-Quinolone Hybrids with Antitumor Effects on Breast Cancer Cell Lines-From the Synthesis to 3D-Cell Culture Effects. Int J Mol Sci 2024; 25:6490. [PMID: 38928197 PMCID: PMC11203957 DOI: 10.3390/ijms25126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.
Collapse
Affiliation(s)
- Vanessa da Gama Oliveira
- Instituto Nacional de Infectologia, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Marcelly Muxfeldt
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil;
| | - Mariana Muniz da Paz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| | - Mayra Silva Coutinho
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Raissa Eduardo dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| | - Giulia Diniz da Silva Ferretti
- Instituto de Bioquimica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | | | - Pedro Fonseca Regufe
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Ivson Lelis Gama
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
- Faculdade da Amazônia Legal, Colider 78500-000, MT, Brazil
| | - Fernanda da Costa Santos Boechat
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Emersom Silva Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil;
| | | | - Marcela Cristina de Moraes
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Maria Cecília Bastos Vieira de Souza
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Pedro Netto Batalha
- Instituto de Química, Universidade Federal Fluminense, Niteroi 24020-141, RJ, Brazil; (M.S.C.); (P.F.R.); (I.L.G.); (F.d.C.S.B.); (M.C.d.M.); (M.C.B.V.d.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (M.M.d.P.); (R.E.d.S.)
| |
Collapse
|
2
|
Jannuzzi AT, Yilmaz Goler AM, Shilkar D, Mondal S, Basavanakatti VN, Yıldırım H, Yıldız M, Çelik Onar H, Bayrak N, Jayaprakash V, TuYuN AF. Cytotoxic activity of quinolinequinones in cancer: In vitro studies, molecular docking, and ADME/PK profiling. Chem Biol Drug Des 2023; 102:1133-1154. [PMID: 37537000 DOI: 10.1111/cbdd.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Lead molecules containing 1,4-quinone moiety are intriguing novel compounds that can be utilized to treat cancer owing to their antiproliferative activities. Nine previously reported quinolinequinones (AQQ1-9) were studied to better understand their inhibitory profile to produce potent and possibly safe lead molecules. The National Cancer Institute (NCI) of Bethesda chose all quinolinequinones (AQQ1-9) based on the NCI Developmental Therapeutics Program and tested them against a panel of 60 cancer cell lines. At a single dose and five further doses, AQQ7 significantly inhibited the proliferation of all leukemia cell lines and some breast cancer cell lines. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ7, in MCF7 and T-47D breast cancer cells, DU-145 prostate cancer cells, HCT-116 and COLO 205 colon cancer cell lines, and HaCaT human keratinocytes using the MTT assay. AQQ7 showed particularly high cytotoxicity against MCF7 cells. Further analysis showed that AQQ7 exhibits anticancer activity through the induction of apoptosis without causing cell cycle arrest or oxidative stress. Molecular docking simulations for AQQ2 and AQQ7 were conducted against the COX, PTEN, and EGFR proteins, which are commonly overexpressed in breast, cervical, and prostate cancers. The in vitro ADME and in vivo PK profiling of these compounds have also been reported.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul University, Istanbul, Turkey
| | - Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Subodh Mondal
- Bioanalysis, Eurofins Advinus BioPharma Services India Pvt Ltd., Bengaluru, Karnataka, India
| | | | - Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Hülya Çelik Onar
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Navarro-Tovar G, Vega-Rodríguez S, Leyva E, Loredo-Carrillo S, de Loera D, López-López LI. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:ph16040496. [PMID: 37111253 PMCID: PMC10144089 DOI: 10.3390/ph16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Silvia Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Correspondence: (D.d.L.); (L.I.L.-L.)
| | - Lluvia Itzel López-López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78377, Mexico
- Correspondence: (D.d.L.); (L.I.L.-L.)
| |
Collapse
|
4
|
Tatar I, Uysal S, Yilmaz S, Tarikogullari AH, Ballar Kirmizibayrak P, Soyer Z. Design, synthesis, and biological evaluation of some novel naphthoquinone-glycine/β-alanine anilide derivatives as noncovalent proteasome inhibitors. Chem Biol Drug Des 2023; 101:1283-1298. [PMID: 36762979 DOI: 10.1111/cbdd.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
A series of novel noncovalent glycine/β-alanine anilide derivatives possessing 2-chloronaphthoquinone structure as a pharmacophoric unit were designed, synthesized, and evaluated for their antiproliferative and antiproteasomal activities against MCF-7 cell line, in vitro. According to biological activity results, all the target compounds showed antiproliferative activity in the range of IC50 = 7.10 ± 0.10-41.08 ± 0.14 μM and most of them exhibited inhibitory efficacy with varying ratios against the three catalytic subunits (β1, β2, and β5) presenting caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities of proteasome. The antiproteasomal activity evaluations revealed that compounds preferentially inhibited the β5 subunit compared with β1 and β2 subunits of the proteasome. Among the compounds, compounds 7 and 9 showed the highest antiproliferative activity with an IC50 value of 7.10 ± 0.10 and 7.43 ± 0.25 μM, respectively. Additionally, compound 7 displayed comparable potency to PI-083 lead compound in terms of β5 antiproteasomal activity with an inhibition percentage of 34.67 at 10 μM. This compound showed an IC50 value of 32.30 ± 0.45 μM against β5 subunit. Furthermore, molecular modeling studies of the most active compound 7 revealed key interactions with β5 subunit. The results suggest that this class of compounds may be beneficial for the development of new potent proteasome inhibitors.
Collapse
Affiliation(s)
- Irem Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, İzmir, Turkey.,Department of Bioengineering, Faculty of Engineering, University of Alanya Alaaddin Keykubat, Antalya, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | - Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| |
Collapse
|
5
|
Exploring the Anticancer Effects of Brominated Plastoquinone Analogs with Promising Cytotoxic Activity in MCF-7 Breast Cancer Cells via Cell Cycle Arrest and Oxidative Stress Induction. Pharmaceuticals (Basel) 2022; 15:ph15070777. [PMID: 35890076 PMCID: PMC9318129 DOI: 10.3390/ph15070777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Plastoquinone analogs are privileged structures among the known antiproliferative natural product-based compound families. Exploiting one of these analogs as a lead structure, we report the investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute of Bethesda within the Developmental Therapeutics Program (DTP). These analogs exhibited growth inhibition in the micromolar range across leukemia, non-small cell lung cancer (EKVX, HOP-92, and NCI-H522), colon cancer (HCT-116, HOP-92), melanoma (LOX IMVI), and ovarian cancer (OVCAR-4) cell lines. One brominated PQ analog (BrPQ5) was selected for a full panel five-dose in vitro assay by the NCI’s Development Therapeutic Program (DTP) division to determine GI50, TGI, and LC50 parameters. The brominated PQ analog (BrPQ5) displayed remarkable activity against most tested cell lines, with GI50 values ranging from 1.55 to 4.41 µM. The designed molecules (BrPQ analogs) obeyed drug-likeness rules, displayed a favorable predictive Absorption, Distribution, Metabolism, and Excretion (ADME) profile, and an in silico simulation predicted a possible BrPQ5 interaction with proteasome catalytic subunits. Furthermore, the in vitro cytotoxic activity of BrPQ5 was assessed, and IC50 values for U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145 prostate cancer, HCT-116 colon cancer, and VHF93 fibroblast cell lines were evaluated using an MTT assay. MCF-7 was the most affected cell line, and the effects of BrPQ5 on cell proliferation, cell cycle, oxidative stress, apoptosis/necrosis induction, and proteasome activity were further investigated in MCF-7 cells. The in vitro assay results showed that BrPQ5 caused cytotoxicity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction. However, BrPQ5 did not inhibit the catalytic activity of the proteasome. These results provide valuable insights for further discovery of novel antiproliferative agents.
Collapse
|
6
|
Pillaiyar T, Rosato F, Wozniak M, Blavier J, Charles M, Laschet C, Kronenberger T, Müller CE, Hanson J. Structure-activity relationships of agonists for the orphan G protein-coupled receptor GPR27. Eur J Med Chem 2021; 225:113777. [PMID: 34454125 DOI: 10.1016/j.ejmech.2021.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
GPR27 belongs, with GPR85 and GPR173, to a small subfamily of three receptors called "Super-Conserved Receptors Expressed in the Brain" (SREB). It has been postulated to participate in key physiological processes such as neuronal plasticity, energy metabolism, and pancreatic β-cell insulin secretion and regulation. Recently, we reported the first selective GPR27 agonist, 2,4-dichloro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (I, pEC50 6.34, Emax 100%). Here, we describe the synthesis and structure-activity relationships of a series of new derivatives and analogs of I. All products were evaluated for their ability to activate GPR27 in an arrestin recruitment assay. As a result, agonists were identified with a broad range of efficacies including partial and full agonists, showing higher efficacies than the lead compound I. The most potent agonist was 4-chloro-2,5-difluoro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7y, pEC50 6.85, Emax 37%), and the agonists with higher efficacies were 4-chloro-2-methyl-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7p, pEC50 6.04, Emax 123%), and 2-bromo-4-chloro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7r, pEC50 5.99, Emax 123%). Docking studies predicted the putative binding site and interactions of agonist 7p with GPR27. Selected potent agonists were found to be soluble and devoid of cellular toxicity within the range of their pharmacological activity. Therefore, they represent important new tools to further characterize the (patho)physiological roles of GPR27.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany; Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| | - Francesca Rosato
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Jeremy Blavier
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Maëlle Charles
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Str. 14, Tübingen, 72076, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Giongo V, Falanga A, De Melo CPP, da Silva GB, Bellavita R, De-Simone SG, Paixão IC, Galdiero S. Antiviral Potential of Naphthoquinones Derivatives Encapsulated within Liposomes. Molecules 2021; 26:molecules26216440. [PMID: 34770849 PMCID: PMC8586984 DOI: 10.3390/molecules26216440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
HSV infections, both type 1 and type 2, are among the most widespread viral diseases affecting people of all ages. Their symptoms could be mild, with cold sores up to 10 days of infection, blindness and encephalitis caused by HSV-1 affecting immunocompetent and immunosuppressed individuals. The severe effects derive from co-evolution with the host, resulting in immune evasion mechanisms, including latency and growing resistance to acyclovir and derivatives. An efficient alternative to controlling the spreading of HSV mutations is the exploitation of new drugs, and the possibility of enhancing their delivery through the encapsulation of drugs into nanoparticles, such as liposomes. In this work, liposomes were loaded with a series of 2-aminomethyl- 3-hydroxy-1,4-naphthoquinones derivatives with n-butyl (compound 1), benzyl (compound 2) and nitrobenzene (compound 3) substituents in the primary amine of naphthoquinone. They were previously identified to have significant inhibitory activity against HSV-1. All of the aminomethylnaphthoquinones derivatives encapsulated in the phosphatidylcholine liposomes were able to control the early and late phases of HSV-1 replication, especially those substituted with the benzyl (compound 2) and nitrobenzene (compound 3), which yields selective index values that are almost nine times more efficient than acyclovir. The growing interest of the industry in topical administration against HSV supports our choice of liposome as a drug carrier of aminomethylnaphthoquinones derivatives for formulations of in vivo pre-clinical assays.
Collapse
Affiliation(s)
- Viveca Giongo
- Programa de Pós-Graduação em Ciências e Biotecnologia, Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil; (C.P.P.D.M.); (S.G.D.-S.); (I.C.P.)
- Correspondence: (V.G.); (S.G.); Tel.: +552-130-829-025 (V.G.); +390-812-534-503 (S.G.)
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Camilly P. Pires De Melo
- Programa de Pós-Graduação em Ciências e Biotecnologia, Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil; (C.P.P.D.M.); (S.G.D.-S.); (I.C.P.)
| | - Gustavo B. da Silva
- Department of of Fundamental Chemistry, Federal Rural University of Rio de Janeiro, Seropédica 23897-000, Brazil;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 34102 Naples, Italy;
| | - Salvatore G. De-Simone
- Programa de Pós-Graduação em Ciências e Biotecnologia, Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil; (C.P.P.D.M.); (S.G.D.-S.); (I.C.P.)
- FIOCRUZ, Center for Technological Development in Health(CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil
| | - Izabel C. Paixão
- Programa de Pós-Graduação em Ciências e Biotecnologia, Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil; (C.P.P.D.M.); (S.G.D.-S.); (I.C.P.)
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, 34102 Naples, Italy;
- Correspondence: (V.G.); (S.G.); Tel.: +552-130-829-025 (V.G.); +390-812-534-503 (S.G.)
| |
Collapse
|
8
|
Estrada FGA, Miccoli S, Aniceto N, García-Sosa AT, Guedes RC. Exploring EZH2-Proteasome Dual-Targeting Drug Discovery through a Computational Strategy to Fight Multiple Myeloma. Molecules 2021; 26:5574. [PMID: 34577052 PMCID: PMC8468724 DOI: 10.3390/molecules26185574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Multiple myeloma is an incurable plasma cell neoplastic disease representing about 10-15% of all haematological malignancies diagnosed in developed countries. Proteasome is a key player in multiple myeloma and proteasome inhibitors are the current first-line of treatment. However, these are associated with limited clinical efficacy due to acquired resistance. One of the solutions to overcome this problem is a polypharmacology approach, namely combination therapy and multitargeting drugs. Several polypharmacology avenues are currently being explored. The simultaneous inhibition of EZH2 and Proteasome 20S remains to be investigated, despite the encouraging evidence of therapeutic synergy between the two. Therefore, we sought to bridge this gap by proposing a holistic in silico strategy to find new dual-target inhibitors. First, we assessed the characteristics of both pockets and compared the chemical space of EZH2 and Proteasome 20S inhibitors, to establish the feasibility of dual targeting. This was followed by molecular docking calculations performed on EZH2 and Proteasome 20S inhibitors from ChEMBL 25, from which we derived a predictive model to propose new EZH2 inhibitors among Proteasome 20S compounds, and vice versa, which yielded two dual-inhibitor hits. Complementarily, we built a machine learning QSAR model for each target but realised their application to our data is very limited as each dataset occupies a different region of chemical space. We finally proceeded with molecular dynamics simulations of the two docking hits against the two targets. Overall, we concluded that one of the hit compounds is particularly promising as a dual-inhibitor candidate exhibiting extensive hydrogen bonding with both targets. Furthermore, this work serves as a framework for how to rationally approach a dual-targeting drug discovery project, from the selection of the targets to the prediction of new hit compounds.
Collapse
Affiliation(s)
- Filipe G. A. Estrada
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Silvia Miccoli
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Drug Science and Technology, University of Turin, Via Verdi 8, 10124 Torino, Italy
| | - Natália Aniceto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (F.G.A.E.); (S.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
9
|
Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem 2021; 223:113632. [PMID: 34153576 DOI: 10.1016/j.ejmech.2021.113632] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Privileged structures are conductive to discover novel bioactive substances because they can bind to multiple targets with high affinity. Quinones are considered to be a privileged structure and useful template for the design of new compounds with potential pharmacological activity. This article presents the recent developments (2014-2021 update) of quinones in the fields of antitumor, antibacterial, antifungal, antiviral, anti-Alzheimer's disease (AD) and antimalarial, mainly focusing on biological activities, structural modification and mechanism of action.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, 250001, 148 Jingyi Road, Jinan, PR China
| | - Guiying Zhang
- Department of Pharmacy, Rizhao People's Hospital, 276800, 126 Tai'an Road, Rizhao, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Jinan, PR China.
| |
Collapse
|
10
|
Zhang W, Wang X, Zhang H, Wen T, Yang L, Miao H, Wang J, Liu H, Yang X, Lei M, Zhu Y. Discovery of novel tripeptide propylene oxide proteasome inhibitors for the treatment of multiple myeloma. Bioorg Med Chem 2021; 40:116182. [PMID: 33971487 DOI: 10.1016/j.bmc.2021.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
The ubiquitin proteasome pathway (UPP) plays a critical role in the maintenance of cell homeostasis and the development of diseases, such as cancer and neurodegenerative disease. A series of novel tripeptide propylene oxide compounds as proteasome inhibitors were designed, synthesized and biologically investigated in this manuscript. The enzymatic activities of final compounds against 20S human proteasome were investigated and structure-activity relationship (SAR) was summarized. Some potent compounds were further evaluated to inhibit the proliferation of multiple myeloma (MM) cancer cell lines RPMI8226 and U266B. The results showed that some compounds were active against MM cancer cell lines with IC50 values of less than 50 nM. The microsomal metabolic stabilities in human, rat and mice species were carried out and the results showed that compounds 30 and 31 were stable enough to be in vivo investigated. The in vivo pharmacokinetic results showed that compounds 30 and 31 had acceptable biological parameters for both ig and iv administrations. In vivo antitumor activities of compounds 30 and 31 with the doses of 100 mg/kg and 50 mg/kg BIW were performed by using RPMI8226 xenograft nude mouse model. Toxicities of compounds 30 and 31 were not observed during the experiment and dose dependent effect was obvious and the tumor volume was greatly inhibited.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Discovery
- Drug Screening Assays, Antitumor
- Epoxy Compounds/chemical synthesis
- Epoxy Compounds/chemistry
- Epoxy Compounds/pharmacology
- Humans
- Male
- Mice
- Mice, Nude
- Microsomes, Liver/chemistry
- Microsomes, Liver/metabolism
- Molecular Structure
- Multiple Myeloma/drug therapy
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors/chemical synthesis
- Proteasome Inhibitors/chemistry
- Proteasome Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Haoyang Zhang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Lin Yang
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Hang Miao
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China
| | - Hailong Liu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Xu Yang
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China; Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China; Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No. 9 Weidi Road, Nanjing 210046, PR China.
| |
Collapse
|