1
|
Nguyen TCT, Huynh TKC, Truong HB, Nguyen THA, Nguyen HP, Ton AK, Nguyen VT, Nguyen THN, Hoang TKD. Rapid and Efficient Dual Detection Of Zn 2+ Ions and Oxytetracycline Hydrochloride Using a Responsive Fluorescent "On-Off" Sensor Based on Simple Salen-Type Schiff Base Ligand. Chem Asian J 2024:e202400636. [PMID: 39171792 DOI: 10.1002/asia.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
This research has progressed to an effective detection chemosensor of zinc, aluminum ions and oxytetracycline hydrochloride antibiotic based on the fluorescence technique. A straightforward method utilizing microwave irradiation was employed to synthesize the salen-type Schiff base ligand N,N'-bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2I), providing a good 70 % yield. In ethanol, the H2I sensor demonstrated remarkable rapidity, selectivity, and sensitivity in detecting zinc ions. The fluorescence spectrum exhibited a 44-fold substantial enhancement at 522 nm and achieved a low limit of detection (LOD) of 1.47 μM. Furthermore, the H2I probe's emission intensity increased by 124 times when compared to the ligand's ability to detect Al3+ ions at 494 nm with a LOD value of 7.4 μM. Additional research was done using the H2I probe's effective Zn2+ detection capability. The ability to recognize zinc ions in different real water samples demonstrated a recovery rate of 98.67 % to 103.31 %. Interestingly, a naked-eye visible fluorescence color of H2I solution impregnated filter papers turned colorless into yell ow under UV irradiation by adding Zn2+ ions, renders it suitable for developing a practical zinc ion detection kit test. In particular, the I-Zn2+ complex effectively quenched the fluorescence toward oxytetracycline hydrochloride (OTC) with a LOD value of 1.49×10-2 μM in DMSO:H2O (6 : 4, v/v). This is a novel and effective procedure for sensing OTC antibiotic by the I-Zn2+ complex. These findings hold immense potential for the development of dual fluorescent probes, thereby enhancing sensitivity and specificity in identifying metal ions and antibiotics in a wide range of applications.
Collapse
Affiliation(s)
- Thi-Cam-Thu Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Thi-Kim-Chi Huynh
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, 100000, Vietnam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thi-Hong-An Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Hoang-Phuc Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Anh-Khoa Ton
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Van-Thanh Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Thi-Hong-No Nguyen
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
| | - Thi-Kim-Dung Hoang
- Department of Technology of Organic Chemistry and Polymer, Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1 A, TL29 Str., Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 70000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, 100000, Vietnam
| |
Collapse
|
2
|
Krüger D, Matshwele JTP, Mukhtar MD, Baecker D. Insights into the Versatility of Using Atomic Absorption Spectrometry in Antibacterial Research. Molecules 2024; 29:3120. [PMID: 38999072 PMCID: PMC11243102 DOI: 10.3390/molecules29133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The ongoing development of bacterial resistance to antibiotics is a global challenge. Research in that field is thus necessary. Analytical techniques are required for such a purpose. From this perspective, the focus was on atomic absorption spectrometry (AAS). Although it is old, AAS often offers unexpected potential. Of course, this should be exploited. The aim was therefore to demonstrate the versatility of the technique in antibacterial research. This is illustrated by various examples of its practical application. AAS can be used, for example, to confirm the identity of antibacterial compounds, for purity controls, or to quantify the antibiotics in pharmaceutical preparations. The latter allowed analysis without laborious sample preparation and without interference from other excipients. In addition, AAS can help elucidate the mode of action or resistance mechanisms. In this context, quantifying the accumulation of the antibiotic drug in the cell of (resistant) bacteria appears to play an important role. The general application of AAS is not limited to metal-containing drugs, but also enables the determination of some organic chemical antibiotics. Altogether, this perspective presents a range of applications for AAS in antibacterial research, intending to raise awareness of the method and may thus contribute to the fight against resistance.
Collapse
Affiliation(s)
- David Krüger
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - James T P Matshwele
- Department of Chemistry, Faculty of Science, University of Botswana, Private Bag 0704, Gaborone, Botswana
| | - Muhammad Dauda Mukhtar
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Bayero University Kano, Gwarzo Road, Kano PMB 3011, Nigeria
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| |
Collapse
|
3
|
Song M, Lv K, Xu Z, Li J, Sun J, Shi J, Xu Y. N6 methyladenosine eraser FTO suppresses Staphylococcus aureus-induced ferroptosis of bone marrow mesenchymal stem cells to ameliorate osteomyelitis through regulating the MDM2/TLR4/SLC7A11 signaling pathway. Cell Biol Int 2024; 48:450-460. [PMID: 38165230 DOI: 10.1002/cbin.12115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Osteomyelitis is a bone destructive inflammatory disease caused by infection. Ferroptosis is closely related to multiple inflammatory diseases, but the role of ferroptosis in Staphylococcus aureus (SA)-induced osteomyelitis remains unknown. In the present study, we found that SA treatment promoted the accumulation of iron, Fe2+ , lipid peroxide, and malondialdehyde, increased TFRC and reduced FTH1 and GPX4 to trigger ferroptosis in rat bone marrow mesenchymal stem cells (BMSCs). Interestingly, increased level of N6 methyl adenosine (m6A) modification along with decreased expression level of m6A eraser FTO were observed in SA-induced BMSCs, while upregulating FTO alleviated SA-triggered ferroptosis and protected cell viability in BMSCs. Mechanistically, MDM2 was identified as a target of FTO-mediated m6A demethylation, and FTO upregulation promoted MDM2 instability to downregulated TLR4 signal and elevate the expression of SLC7A11 and GPX4 in SA-induced BMSCs. Functional recovery experiments verified that overexpressing MDM2 or TLR4 reversed the inhibiting effect of FTO upregulation on ferroptosis in SA-treated BMSCs. Additionally, FTO upregulation restrained ferroptosis and pathological damage to bone tissue in SA-induced osteomyelitis model rats. Altogether, m6A eraser FTO alleviates SA-induced ferroptosis in osteomyelitis models partly through inhibiting the MDM2-TLR4 axis.
Collapse
Affiliation(s)
- Muguo Song
- Graduate School of Kunming Medical University, Kunming, China
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Kehan Lv
- Graduate School of Kunming Medical University, Kunming, China
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Zhi Xu
- Graduate School of Kunming Medical University, Kunming, China
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Junyi Li
- Graduate School of Kunming Medical University, Kunming, China
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Jian Sun
- Graduate School of Kunming Medical University, Kunming, China
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Jian Shi
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Yongqing Xu
- Orthopaedics Department, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
4
|
Sui X, Wang J, Zhao Z, Liu B, Liu M, Liu M, Shi C, Feng X, Fu Y, Shi D, Li S, Qi Q, Xian M, Zhao G. Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction. Commun Biol 2024; 7:199. [PMID: 38368473 PMCID: PMC10874397 DOI: 10.1038/s42003-024-05903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.
Collapse
Affiliation(s)
- Xinyue Sui
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jichao Wang
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqiang Zhao
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Liu
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Cong Shi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
5
|
Zhou YC, Zhao TK, Tao SM, Wang P, Guan YC, Yang KP, Chen SQ, Pu XY. Recent Progress in Ferroptosis Induced Tumor Cell Death by Anti-tumor Metallic complexes. Chem Asian J 2024; 19:e202301020. [PMID: 38149729 DOI: 10.1002/asia.202301020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
Metal complexes represented by platinum complexes play a very important role in cancer treatment due to their diverse chemical structures and anti-tumor activities. Recently, ferroptosis has emerged as a newly occurring cell death form in the anti-tumor process. It has been reported that metal complexes could inhibit the proliferation and metastasis of tumors and combat chemotherapy resistance by targeting ferroptosis. In this review, we briefly describe ferroptosis as a fundamental process for tumor suppression and triggering anti-tumor immune responses. We summarize recent developments on metal complexes that induce ferroptosis. Finally, we outline the prospects for the application of metal complexes to the treatment of tumors based on ferroptosis and the associated problems that need to be solved, and discussed other potential research directions of metal complexes.
Collapse
Affiliation(s)
- Yong-Chang Zhou
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Tian-Kun Zhao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Si-Man Tao
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Peng Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yi-Chen Guan
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Ke-Pei Yang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Sheng-Qiang Chen
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Xiu-Ying Pu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| |
Collapse
|
6
|
Kushwaha R, Rai R, Gawande V, Singh V, Yadav AK, Koch B, Dhar P, Banerjee S. Antibacterial Photodynamic Therapy by Zn(II)-Curcumin Complex: Synthesis, Characterization, DFT Calculation, Antibacterial Activity, and Molecular Docking. Chembiochem 2024; 25:e202300652. [PMID: 37921481 DOI: 10.1002/cbic.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
The increase in antibacterial drug resistance is threatening global health conditions. Recently, antibacterial photodynamic therapy (aPDT) has emerged as an effective antibacterial treatment with high cure gain. In this work, three Zn(II) complexes viz., [Zn(en)(acac)Cl] (1), [Zn(bpy)(acac)Cl] (2), [Zn(en)(cur)Cl] (3), where en=ethylenediamine (1 and 3), bpy=2,2'-bipyridine (2), acac=acetylacetonate (1 and 2), cur=curcumin monoanionic (3) were developed as aPDT agents. Complexes 1-3 were synthesized and fully characterized using NMR, HRMS, FTIR, UV-Vis. and fluorescence spectroscopy. The HOMO-LUMO energy gap (Eg), and adiabatic splittings (ΔS1-T1 and ΔS0-T1 ) obtained from DFT calculation indicated the photosensivity of the complexes. These complexes have not shown any potent antibacterial activity under dark conditions but the antibacterial activity of these complexes was significantly enhanced upon light exposure (MIC value up to 0.025 μg/mL) due to their light-mediated 1 O2 generation abilities. The molecular docking study suggested that complexes 1-3 interact efficiently with DNA gyrase B (PDB ID: 4uro). Importantly, 1-3 did not show any toxicity toward normal HEK-293 cells. Overall, in this work, we have demonstrated the promising potential of Zn(II) complexes as effective antibacterial agents under the influence of visible light.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Vedant Gawande
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Virendra Singh
- Department of Zoology, Institution of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Biplob Koch
- Department of Zoology, Institution of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Krüger D, Weng A, Baecker D. Development and Application of an Atomic Absorption Spectrometry-Based Method to Quantify Magnesium in Leaves of Dioscorea polystachya. Molecules 2023; 29:109. [PMID: 38202692 PMCID: PMC10780132 DOI: 10.3390/molecules29010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The Chinese yam (Dioscorea polystachya, DP) is known for the nutritional value of its tuber. Nevertheless, DP also has promising pharmacological properties. Compared with the tuber, the leaves of DP are still very little studied. However, it may be possible to draw conclusions about the plant quality based on the coloration of the leaves. Magnesium, as a component of chlorophyll, seems to play a role. Therefore, the aim of this research work was to develop an atomic absorption spectrometry-based method for the analysis of magnesium (285.2125 nm) in leaf extracts of DP following the graphite furnace sub-technique. The optimization of the pyrolysis and atomization temperatures resulted in 1500 °C and 1800 °C, respectively. The general presence of flavonoids in the extracts was detected and could explain the high pyrolysis temperature due to the potential complexation of magnesium. The elaborated method had linearity in a range of 1-10 µg L-1 (R2 = 0.9975). The limits of detection and quantification amounted to 0.23 µg L-1 and 2.00 µg L-1, respectively. The characteristic mass was 0.027 pg, and the recovery was 96.7-102.0%. Finally, the method was applied to extracts prepared from differently colored leaves of DP. Similar magnesium contents were obtained for extracts made of dried and fresh leaves. It is often assumed that the yellowing of the leaves is associated with reduced magnesium content. However, the results indicated that yellow leaves are not due to lower magnesium levels. This stimulates the future analysis of DP leaves considering other essential minerals such as molybdenum or manganese.
Collapse
Affiliation(s)
- David Krüger
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany;
| | - Alexander Weng
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany;
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| |
Collapse
|
8
|
Morcos CA, Khattab SN, Haiba NS, Bassily RW, Abu-Serie MM, Teleb M. Battling colorectal cancer via s-triazine-based MMP-10/13 inhibitors armed with electrophilic warheads for concomitant ferroptosis induction; the first-in-class dual-acting agents. Bioorg Chem 2023; 141:106839. [PMID: 37703744 DOI: 10.1016/j.bioorg.2023.106839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
There is an increasing interest in halting CRC by combining ferroptosis with other forms of tumor cell death. However, ferroptosis induction is seldom studied in tandem with inhibiting MMPs. A combination that is expected to enhance the therapeutic outcome based on mechanistic ferroptosis studies highlighting the interplay with MMPs, especially MMP-13 associated with CRC metastasis and poor prognosis. Herein, we report new hybrid triazines capable of simultaneous MMP-10/13 inhibition and ferroptosis induction bridging the gap between their anticancer potentials. The MMP-10/13 inhibitory component of the scaffold was based on the non-hydroxamate model inhibitors. s-Triazine was rationalized as the core inspired by altretamine, an FDA-approved ferroptosis inducer. The ferroptosis pharmacophores were then installed as Michael acceptors via triazole-based spacers. The electrophilic reactivity was tuned by incorporating cyano and/or substituted phenyl groups influencing their electronic and steric properties and enriching the SAR study. Initial screening revealed the outstanding cytotoxicity profiles of the nitrophenyl-tethered chalcone 5e and the cyanoacrylohydrazides bearing p-fluorophenyl 9b and p-bromophenyl 9d appendages. 9b and 9d surpassed NNGH against MMP-10 and -13, especially 9d (IC50 = 0.16 μM). Ferroptosis studies proved that 9d depleted GSH in HCT-116 cells by a relative fold decrement of 0.81 with modest direct GPX4 inhibition, thus inducing lipid peroxidation, the hallmark of ferroptosis, by 1.32 relative fold increment. Docking presumed that 9d could bind to the MMP-10 S1' pocket and active site His221, extend through the MMP-13 hydrophobic pocket, and interact covalently with the GPX4 catalytic selenocysteine. 9d complexed with ferrous oxide nanoparticles was 7.5 folds more cytotoxic than its free precursor against HCT-116 cells. The complex-induced intracellular iron overload, depleted GSH with a relative fold decrement of 0.12, consequently triggering lipid peroxidation and ferroptosis by a 3.94 relative fold increment. Collectively, 9d could be a lead for tuning MMPs selectivity and ferroptosis induction potential to maximize the benefit of such a combination.
Collapse
Affiliation(s)
- Christine A Morcos
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| | - Rafik W Bassily
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
9
|
Farhan N, Al-Maleki AR, Sarih NM, Yahya R. Synthesis and evaluation of antibacterial activity of transition metal-oleoyl amide complexes. Bioorg Chem 2023; 140:106786. [PMID: 37586131 DOI: 10.1016/j.bioorg.2023.106786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Recent studies show that some metal ions, injure microbial cells in various ways due to membrane breakdown, protein malfunction, and oxidative stress. Metal complexes are suited for creating novel antibacterial medications due to their distinct mechanisms of action and the variety of three-dimensional geometries they can acquire. In this Perspective, the present study focused on new antibacterial strategies based on metal oleoyl amide complexes. Thus, oleoyl amides ligand (fatty hydroxamic acid and fatty hydrazide hydrate) with the transition metal ions named Ag (I), Co (II), Cu (II), Ni (II) and Sn (II) complexes were successfully synthesized in this study. The metals- oleoyl amide were characterized using elemental analysis, and fourier transforms infrared (FTIR) spectroscopy. The antibacterial effect of metals- oleoyl amide complexes was investigated for Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by analysing minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and scanning electron microscopy (SEM). The results showed that metal-oleoyl amide complexes have high antibacterial activity at low concentrations. This study inferred that metal oleoyl amide complexes could be utilised as a promising therapeutic antibacterial agent.
Collapse
Affiliation(s)
- Nesrain Farhan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Rosiyah Yahya
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Mukhtar MD, Rufa’i FA, Yola AU, Babba NI, Baecker D. Evaluating the Potency of Selected Antibiotic Medications Dispensed in Community Pharmacies in Gwale, Kano, Nigeria. Antibiotics (Basel) 2023; 12:1582. [PMID: 37998784 PMCID: PMC10668698 DOI: 10.3390/antibiotics12111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
The worsening of antibiotic resistance is a multifactorial process. One aspect of this is the counterfeiting of antibiotic medications. This is supposed to be particularly high in developing countries, including Nigeria. Therefore, the potency of some antibiotic drugs dispensed in community pharmacies in Gwale, Kano, Nigeria, was investigated in this case study. Three products, each from different manufacturers, with the active ingredients of ceftriaxone, gentamicin, ciprofloxacin, and metronidazole, respectively, were included in this study. By means of a disc-diffusion assay, the effect against the typed strains Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) as well as Clostridium tetani isolated from soil was tested. Clinical isolates of S. aureus and E. coli were also used. While antibiotics, with the exception of ciprofloxacin-containing preparations against C. tetani, showed acceptable efficacy against the typed strains by comparison with the clinical science laboratory references, a predominant failure was observed with the clinical isolates. Thus, the investigated drug preparations can be considered of acceptable quality for the treatment of susceptible bacterial infections. This excludes counterfeits in the sampled preparations. However, the insufficient efficacy against clinical isolates further documents the severity of nosocomial bacteria.
Collapse
Affiliation(s)
- Muhammad Dauda Mukhtar
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Bayero University Kano, Gwarzo Road, Kano PMB 3011, Nigeria; (A.U.Y.); (N.I.B.)
| | - Fatihu Ahmad Rufa’i
- Kano Liaison Office, Nigerian Institute for Trypanosomiasis (and Onchocerciasis) Research, Surame Road, Kaduna PMB 2077, Nigeria;
| | - Abdurrahaman Umar Yola
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Bayero University Kano, Gwarzo Road, Kano PMB 3011, Nigeria; (A.U.Y.); (N.I.B.)
| | - Nafisa Ibrahim Babba
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Bayero University Kano, Gwarzo Road, Kano PMB 3011, Nigeria; (A.U.Y.); (N.I.B.)
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| |
Collapse
|
11
|
Ngounoue Kamga FA, Hrubaru MM, Enache O, Diacu E, Draghici C, Tecuceanu V, Ungureanu EM, Nkemone S, Ndifon PT. Ni(II)-Salophen-Comprehensive Analysis on Electrochemical and Spectral Characterization and Biological Studies. Molecules 2023; 28:5464. [PMID: 37513334 PMCID: PMC10384438 DOI: 10.3390/molecules28145464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
New aspects of the Ni(II)-salophen complex and salophen ligand precursor were found during deep electrochemical and optical characterization, as well as biological studies for new pharmacological applications. Physicochemical and spectroscopic methods (1H- and 13C-NMR, FT-IR and UV-Vis, electrospray ionization mass spectroscopy, thermogravimetric analysis, and molar conductance measurements) were also used to prove that the salophen ligand acts as a tetradentate and coordinates to the central metal through nitrogen and oxygen atoms. The electrochemical behavior of the free Schiff salophen ligand (H2L) and its Ni(II) complex (Ni(II)L) was deeply studied in tetrabutylammonium perchlorate solutions in acetonitrile via CV, DPV, and RDE. Blue films on the surfaces of the electrodes as a result of the electropolymerization processes were put in evidence and characterized via CV and DPV. (H2L) and Ni(II)L complexes were tested for their antimicrobial, antifungal, and antioxidant activity, showing good antimicrobial and antifungal activity against several bacteria and fungi.
Collapse
Affiliation(s)
- Francis Aurelien Ngounoue Kamga
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Madalina-Marina Hrubaru
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Sector 6, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Oana Enache
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Elena Diacu
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Constantin Draghici
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Sector 6, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Victorita Tecuceanu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Sector 6, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Eleonora-Mihaela Ungureanu
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Gheorghe Polizu 1-7, Sector 1, 011061 Bucharest, Romania
| | - Stephanie Nkemone
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
| | - Peter T Ndifon
- Coordination Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
| |
Collapse
|
12
|
Cai DH, Liang BF, Chen BH, Liu QY, Pan ZY, Le XY, He L. A novel water-soluble Cu(II) gluconate complex inhibits cancer cell growth by triggering apoptosis and ferroptosis related mechanisms. J Inorg Biochem 2023; 246:112299. [PMID: 37354603 DOI: 10.1016/j.jinorgbio.2023.112299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Metal copper complexes have attracted extensive attention as potential alternatives to platinum-based anticancer drugs due to their possible different modes of action. Herein, a new copper(II) gluconate complex, namely [Cu(DPQ)(Gluc)]·2H2O (CuGluc, DPQ = pyrazino[2,3-f][1,10]phenanthroline), with good water-solubility and high anticancer activity was synthesized by using D-gluconic acid (Gluc-2H) as an auxiliary ligand. The complex was well characterized by single-crystal X-ray diffraction analysis, elemental analysis, molar conductivity, and Fourier transform infrared spectroscopy (FTIR). The DNA-binding experiments revealed that CuGluc was bound to DNA by intercalation with end-stacking binding. CuGluc could oxidatively cleave DNA, in which 1O2 and H2O2 were involved. In addition, CuGluc was bound to the IIA subdomain of human serum albumin (HSA) through hydrophobic interaction and hydrogen bonding, showing a good affinity for HSA. The complex showed superior anticancer activity toward several cancer cells than cisplatin in vitro. Further studies indicated that CuGluc caused apoptotic cell death in human liver cancer (HepG2) cells through elevated intracellular reactive oxygen species (ROS) levels, mitochondrial dysfunction, cell cycle arrest, and caspase activation. Interestingly, CuGluc also triggered the ferroptosis mechanism through lipid peroxide accumulation and inhibition of glutathione peroxidase 4 (GPX4) activity. More importantly, CuGluc significantly inhibited tumor growth in vivo, which may benefit from the combined effects of apoptosis and ferroptosis. This work provides a promising strategy to develop highly effective antitumor copper complexes by coordinating with the glucose metabolite D-gluconic acid and exploiting the synergistic effects of apoptosis and ferroptosis mechanisms.
Collapse
Affiliation(s)
- Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bin-Fa Liang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Majumdar D, Philip JE, Dubey A, Tufail A, Roy S. Synthesis, spectroscopic findings, SEM/EDX, DFT, and single-crystal structure of Hg/Pb/Cu-SCN complexes: In silico ADME/T profiling and promising antibacterial activities. Heliyon 2023; 9:e16103. [PMID: 37251888 PMCID: PMC10213201 DOI: 10.1016/j.heliyon.2023.e16103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
This work contemplates synthesizing M-SCN crystal compounds (M = Hg/Pb/Cu) in the presence of respective metal salts and exogenous ancillary SCN- ion by slowly evaporating the mixed solvent (CH3OH + ACN). The complexes were characterized by spectroscopy, SEM/EDX, and X-ray crystallography. The Hg-Complex, Pb-Complex, and Cu-Complex crystallize in the monoclinic space group (Z = 2/4). The crystal packing fascinatingly consists of weak covalent bonding and Pb⋯S contacts of tetrel type bond. Here are the incredible supramolecular topographies delineated by the Hirshfeld surface and 2D fingerprint plot. The B3LYP/6-311++G (d, p) level calculations in the gas phase optimized the compound's geometry. The energy difference (Δ) between HOMO-LUMO and global reactivity parameters investigates the complex's energetic activity. MESP highlights the electrophilic/nucleophilic sites and H-bonding interactions. Molecular docking was conceded with the Gram- + ve bacterium Bacillus Subtilis (PDB ID: 6UF6) and the Gram-ve bacterium Proteus Vulgaris (PDB ID: 5HXW) to authenticate the bactericidal activity. ADME/T explains the various pharmacological properties. In addition, we studied the antibacterial activity with MIC (μg/mL) values and time-kill kinetics against Staphylococcus aureus (ATCC 25923) and Bacillus subtilis (ATCC 6635) as Gram-positive, Pseudomonas aeruginosa (ATCC 27853) and Escherichia coli (ATCC 25922) as Gram-negative bacteria.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk-721636, West Bengal, India
| | | | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 274203, India
- Department of Pharmacology, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 274203, India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
14
|
Huang HY, Wang Q, Zhang CY, Chen ZX, Wang JT, Liao XW, Yu RJ, Xiong YS. Synthesis and biological evaluation of ruthenium complexes containing phenylseleny against Gram-positive bacterial infection by damage membrane integrity and avoid drug-resistance. J Inorg Biochem 2023; 242:112175. [PMID: 36898296 DOI: 10.1016/j.jinorgbio.2023.112175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Compounds modified with selenium atom as potential antibacterial agents have been exploited to combat the nondrug-resistant bacterial infection. In this study, we designed and synthesized four ruthenium complexes retouching of selenium-ether. Fortunately, those four ruthenium complexes shown excellent antibacterial bioactive (MIC: 1.56-6.25 μg/mL) against Staphylococcus aureus (S. aureus), and the most active complex Ru(II)-4 could kill S. aureus by targeting the membrane integrity and avoid the bacteria to evolve drug resistance. Moreover, Ru(II)-4 was found to significantly inhibit the formation of biofilms and biofilm eradicate capacity. In toxicity experiments, Ru(II)-4 exhibited poor hemolysis and low mammalian toxicity. To illustrate the antibacterial mechanism: we conducted scanning electron microscope (SEM), fluorescent staining, membrane rupture and DNA leakage assays. Those results demonstrated that Ru(II)-4 could destroy the integrity of bacterial cell membrane. Furthermore, both G. mellonella wax worms infection model and mouse skin infection model were established to evaluate the antibacterial activity of Ru(II)-4 in vivo, the results indicated that Ru(II)-4 was a potential candidate for combating S. aureus infections, and almost non-toxic to mouse tissue. Thus, all the results indicated that introducing selenium-atom into ruthenium compounds were a promising strategy for developing interesting antibacterial agents.
Collapse
Affiliation(s)
- Hai-Yan Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qian Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zi-Xiang Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jin-Tao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ru-Jian Yu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
15
|
Synthesis, Spectral Characterization, and Biological Activities of Some Metal Complexes Bearing an Unsymmetrical Salen-Type Ligand, (Z)-1-(((2-((E)-(2-Hydroxy-6-methoxybenzylidene)amino)phenyl)amino) methylene) Naphthalen-2(1H)-one. HETEROATOM CHEMISTRY 2023. [DOI: 10.1155/2023/4563958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An unsymmetrical salen-type Schiff base ligand, (Z)-1-(((2-((E)-(2-hydroxy-6-methoxybenzylidene)amino)phenyl)amino)methylene)naphthalen-2(1H)-one, and its Zn(II), Cu(II), Co(II), Mn(II), and Fe(III) complexes were synthesized and characterized by mass (MS), nuclear magnetic resonance (NMR), infrared (IR), ultraviolet-visible (UV-Vis) spectra, and effective magnetic moments. The thermal analyses of the obtained ligand and metal complexes were conducted by thermogravimetric analysis (TGA). Antimicrobial activity of the unsymmetrical Schiff base ligand and its metal complexes were examined for Staphylococcus aureus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. In vitro anticancer property of synthetic compounds was estimated against human cancer cell lines, a subline of Hela tumor cell line (KB), and a human liver cancer cell line (HepG-2) as well.
Collapse
|
16
|
Zhao X, Zhang J, Zhang W, Guo Z, Wei W, Wang X, Zhao J. A chiral fluorescent Ir(iii) complex that targets the GPX4 and ErbB pathways to induce cellular ferroptosis. Chem Sci 2023; 14:1114-1122. [PMID: 36756328 PMCID: PMC9891362 DOI: 10.1039/d2sc06171f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Ferroptosis has recently emerged as a non-apoptotic form of programmed cell death and promising target for anticancer treatment. However, it is challenging to discover ferroptosis inducers with both highly selective tumour targeting and low cytotoxicity to normal cells. Here, we report an Ir(iii) complex, Ir1, that contains a novel chiral pyridine RAS-selective lethal ligand (Py-RSL). This complex effectively inhibits glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) to induce ferroptosis in human fibrosarcoma (HT-1080) cells. Notably, metal coordination not only endows Ir1 with fluorescent properties for convenient cellular real-time tracking but also efficiently reduces the off-target toxicity of the Py-RSL ligand. Furthermore, label-free quantitative proteomic profiling revealed that Ir1 simultaneously inhibits the ErbB signalling pathway to enhance tumour suppression. Our work is the first to report a ferroptosis-inducing iridium complex with dual mechanisms of inhibition and provides a highly selective and efficient route to develop new ferroptosis-inducing metallodrugs.
Collapse
Affiliation(s)
- Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jingyi Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wei Wei
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
17
|
Peng YD, Yan YJ, La YT, Han XJ, Huang F, Dong WK. Two novel Cu(II) and Ni(II) quinolone-containing half-salamo-like complexes: Theoretical and experimental studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Ma LJ, Li X, Yan YJ, Yue YN, Dong WK. An investigation of two heterobimetallic [Cu(II)2Ln(III)] (Ln = La and Ce) complexes of a more flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
20
|
Electronic Impacts on the Solvent-Free Mechanochemical Synthesis of Salophen Ligands in Ball Mill. J CHEM-NY 2022. [DOI: 10.1155/2022/1418032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To realize the scope of the solid-solid reaction, the functional solid diamines reacted with solid 3-ethoxysalicylaldehyde under high-speed ball milling in a solvent-free environment. The findings showed that a wide range of Salophen ligands could be produced in good to excellent yields. In comparison to the similar Salophen synthesis to date, the current study provided solvent-free, fast reaction, high yield, and easy work-up.
Collapse
|
21
|
Kargar H, Ashfaq M, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Tahir MN. Unsymmetrical Ni(II) Schiff base complex: Synthesis, spectral characterization, crystal structure analysis, Hirshfeld surface investigation, theoretical studies, and antibacterial activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
|
23
|
Antimicrobial Activity of Rhenium Di- and Tricarbonyl Diimine Complexes: Insights on Membrane-Bound S. aureus Protein Binding. Pharmaceuticals (Basel) 2022; 15:ph15091107. [PMID: 36145328 PMCID: PMC9501577 DOI: 10.3390/ph15091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.
Collapse
|
24
|
Synthesis, crystal structure, fluorescence properties and theoretical calculations of heterobimetallic 3d–4f complex with a flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Extensively Drug-Resistant Klebsiella pneumoniae Counteracts Fitness and Virulence Costs That Accompanied Ceftazidime-Avibactam Resistance Acquisition. Microbiol Spectr 2022; 10:e0014822. [PMID: 35435751 PMCID: PMC9241641 DOI: 10.1128/spectrum.00148-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of extensively drug-resistant (XDR) Klebsiella pneumoniae to rapidly acquire resistance to novel antibiotics is a global concern. Moreover, Klebsiella clonal lineages that successfully combine resistance and hypervirulence have increasingly occurred during the last years. However, the underlying mechanisms of counteracting fitness costs that accompany antibiotic resistance acquisition remain largely unexplored. Here, we investigated whether and how an XDR sequence type (ST)307 K. pneumoniae strain developed resistance against the novel drug combination ceftazidime-avibactam (CAZ-AVI) using experimental evolution. In addition, we performed in vitro and in vivo assays, molecular modeling, and bioinformatics to identify resistance-conferring processes and explore the resulting decrease in fitness and virulence. The subsequent amelioration of the initial costs was also addressed. We demonstrate that distinct mutations of the major nonselective porin OmpK36 caused CAZ-AVI resistance that persists even upon following a second experimental evolution without antibiotic selection pressure and that the Klebsiella strain compensates the resulting fitness and virulence costs. Furthermore, the genomic and transcriptomic analyses suggest the envelope stress response regulator rpoE and associated RpoE-regulated genes as drivers of this compensation. This study verifies the crucial role of OmpK36 in CAZ-AVI resistance and shows the rapid adaptation of a bacterial pathogen to compensate fitness- and virulence-associated resistance costs, which possibly contributes to the emergence of successful clonal lineages. IMPORTANCE Extensively drug-resistant Klebsiella pneumoniae causing major outbreaks and severe infections has become a significant challenge for health care systems worldwide. Rapid resistance development against last-resort therapeutics like ceftazidime-avibactam is a significant driver for the accelerated emergence of such pathogens. Therefore, it is crucial to understand what exactly mediates rapid resistance acquisition and how bacterial pathogens counteract accompanying fitness and virulence costs. By combining bioinformatics with in vitro and in vivo phenotypic approaches, this study revealed the critical role of mutations in a particular porin channel in ceftazidime-avibactam resistance development and a major metabolic regulator for ameliorating fitness and virulence costs. These results highlight underlying mechanisms and contribute to the understanding of factors important for the emergence of successful bacterial pathogens.
Collapse
|
26
|
Czuczi T, Murányi J, Bárány P, Móra I, Borbély A, Csala M, Csámpai A. Synthesis and Antiproliferative Activity of Novel Imipridone–Ferrocene Hybrids with Triazole and Alkyne Linkers. Pharmaceuticals (Basel) 2022; 15:ph15040468. [PMID: 35455465 PMCID: PMC9028308 DOI: 10.3390/ph15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/10/2022] Open
Abstract
Imipridones, including ONC201, ONC206 and ONC212 (which are emblematic members of this class of compounds developed by Oncoceutics) constitute a novel class of anticancer agents, with promising results in clinical trials. With the aim of increasing the ROS (reactive oxygen species) responsivity of the synthesized molecules, a set of novel ferrocene–imipridone hybrids were designed and synthesized. Our strategy was motivated by the documented interplay between the imipridone-triggered activation of TRAIL (the tumor necrosis factor-related apoptosis-inducing ligand) and mitochondrial ClpP (Caseinolytic protease P) and the ROS-mediated effect of ferrocene-containing compounds. In order to obtain novel hybrids with multitarget characters, the ferrocene moiety was tethered to the imipridone scaffold through ethynylene and 1,2,3-triazolyl linkers by using Sonogashira coupling of Cu(I)- and Ru(II)-catalyzed azide–alkyne cycloadditions. The biological activities of the new hybrids were examined by using in vitro cell viability assays on four malignant cell lines (PANC-1, A2058, EBC-1 and Fadu), along with colony formation assays on the most resistant PANC-1 cell line. Several hybrids caused a significantly greater drop in the cell viability compared to ONC201, and two of them completely overcame the resistance, with IC50 values comparable to those produced by ONC201. The two most potent hybrids, but not ONC201, induced apoptosis/necrosis in PANC-1 and A2058 cells after 24 h of treatment.
Collapse
Affiliation(s)
- Tamás Czuczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary; (T.C.); (P.B.)
| | - József Murányi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; (J.M.); (I.M.); (M.C.)
| | - Péter Bárány
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary; (T.C.); (P.B.)
| | - István Móra
- MTA-SE Pathobiochemistry Research Group, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; (J.M.); (I.M.); (M.C.)
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary;
| | - Miklós Csala
- MTA-SE Pathobiochemistry Research Group, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; (J.M.); (I.M.); (M.C.)
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Budapest Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary; (T.C.); (P.B.)
- Correspondence: ; Tel.: +36-1-372-2500 (ext. 6591)
| |
Collapse
|
27
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
28
|
Levina A, Crans DC, Lay PA. Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics 2022; 14:790. [PMID: 35456624 PMCID: PMC9026487 DOI: 10.3390/pharmaceutics14040790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Yue YN, La YT, Han XJ, Dong WK. Coordination-driven self-assemblies of two hetero‐trinuclear [Cu(II) 2Ln(III)] (Ln = La and Ce) complexes with a flexible bis(salamo)‐type ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2050713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yong-Ning Yue
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Xiu-Juan Han
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
30
|
Validated Capillary Zone Electrophoresis Method for Impurity Profiling and Determination of NiII(3-OMe-Salophene). SEPARATIONS 2022. [DOI: 10.3390/separations9020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A capillary zone electrophoresis method was developed for the determination of NiII(3-OMe-salophene), a substance with anticancer activity in vitro. A fused silica capillary (56 cm × 100 µm) was used for this purpose. The method was optimized in terms of parameters affecting the electrophoretic conditions in order to optimize separation efficiency and total time of migration. The analysis was best performed using an operating buffer of 50 mM borate, adjusted to pH 9.3, mixed with acetonitrile (50%, v/v) as organic modifier. Injections were performed hydrodynamically by applying a pressure of 50 mbar for 8 s, and a 30 kV separation voltage was selected at 25 °C. Detection was carried out at 250 nm using diode array detector (DAD). The method allowed the separation of NiII(3-OMe-salophene) from four other structurally related impurities in a total migration time (tm) of 8 min. Peak identification was achieved using the standard reference of individual impurities. The purity of the migrated NiII(3-OMe-salophene) was confirmed by Ultra-violet (UV) scan overlay depending on DAD. The linear ranges for the determination of NiII(3-OMe-salophene) was 400–20,000 ng mL−1 with limit of detection (LOD) of 120 ng mL−1. Acceptable intra-day and inter-day precisions were achieved (%relative standard deviation (RSD) results were less than 0.76% and 0.30%, respectively). The proposed method was assessed for greenness and compared to reported methodologies to prove superiority.
Collapse
|
31
|
Adhikari J, Bhattarai A, Chaudhary NK. Synthesis, characterization, physicochemical studies, and antibacterial evaluation of surfactant-based Schiff base transition metal complexes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Masih PJ, Kesharwani T, Rodriguez E, Vertudez MA, Motakhaveri ML, Le TK, Tran MKT, Cloyd MR, Kornman CT, Phillips AM. Synthesis and Evaluation of 3-Halobenzo[ b]thiophenes as Potential Antibacterial and Antifungal Agents. Pharmaceuticals (Basel) 2021; 15:39. [PMID: 35056096 PMCID: PMC8780876 DOI: 10.3390/ph15010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
The global health concern of antimicrobial resistance has harnessed research interest to find new classes of antibiotics to combat disease-causing pathogens. In our studies, 3-halobenzo[b]thiophene derivatives were synthesized and tested for their antimicrobial activities using the broth microdilution susceptibility method. The 3-halo substituted benzo[b]thiophenes were synthesized starting from 2-alkynyl thioanisoles using a convenient electrophilic cyclization methodology that utilizes sodium halides as the source of electrophilic halogens when reacted along with copper(II) sulfate. This environmentally benign methodology is facile, uses ethanol as the solvent, and results in 3-halo substituted benzo[b]thiophene structures in very high yields. The cyclohexanol-substituted 3-chloro and 3-bromobenzo[b]thiophenes resulted in a low MIC of 16 µg/mL against Gram-positive bacteria and yeast. Additionally, in silico absorption, distribution, metabolism, and excretion (ADME) properties of the compounds were determined. The compounds with the lowest MIC values showed excellent drug-like properties with no violations to Lipinski, Veber, and Muegge filters. The time-kill curve was obtained for cyclohexanol-substituted 3-chlorobenzo[b]thiophenes against Staphylococcus aureus, which showed fast bactericidal activity at MIC.
Collapse
Affiliation(s)
- Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Elivet Rodriguez
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Mia A Vertudez
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Mina L Motakhaveri
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Terelan K Le
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Minh Kieu T Tran
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Matthew R Cloyd
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Cory T Kornman
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Aimee M Phillips
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| |
Collapse
|
33
|
Jian Y, Jin Z, Qi S, Da X, Wang Z, Wang X, Zhou Q. An Alkynyl-Dangling Ru(II) Polypyridine Complex for Targeted Antimicrobial Photodynamic Therapy. Chemistry 2021; 28:e202103359. [PMID: 34890065 DOI: 10.1002/chem.202103359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/11/2022]
Abstract
To realize clinical application of antibacterial photodynamic therapy (aPDT), one of the most arduous challenges is how to render aPDT agents high selectivity against bacterial pathogens. In light of the fact that amino group-containing lipids are rich on the outer surfaces of Gram-positive bacteria, we herein constructed an alkynyl-dangling ruthenium(II) polypyridine complex (Ru2) to preferentially label Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) over mammalian cells via the amino-yne bio-orthogonal click reaction. Thanks to the strong singlet oxygen generation ability, Ru2 could photo-inactivate S. aureus and MRSA effectively and specifically. Phosphatidylethanolamine (PE) molecules also exist in mammalian cells but are not accessible for Ru2, leading to its poor binding/uptake and negligible cytotoxicity in the dark and upon irradiation towards mammalian cells as well as low hemolysis, all favorable for aPDT application.
Collapse
Affiliation(s)
- Yao Jian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihui Jin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Qi
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuwen Da
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanhua Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuesong Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianxiong Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
34
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|