1
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
2
|
Bai H, Gong W, Pang Y, Shi C, Zhang Z, Guo L, Li Y, Guo L, Wang W, Wang H. Synthesis, cytotoxicity, and biomacromolecule binding: Three isomers of nitrosylruthenium complexes with bidentate bioactive molecules as co-ligands. Int J Biol Macromol 2023:125009. [PMID: 37245757 DOI: 10.1016/j.ijbiomac.2023.125009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Three isomeric nitrosylruthenium complexes [RuNO(Qn)(PZA)Cl] (P1, P2, and P3) with bioactive small molecules 8-hydroxyquinoline (Qn) and pyrazinamide (PZA) as co-ligands were synthesized, and their crystal structures were determined using X-ray diffraction technique. The cellular toxicity of the isomeric complexes was compared to understand the effects of the geometries on the biological activity of the complexes. Both the complexes and the human serum albumin (HSA) complex adducts affected the extent of proliferation of HeLa cells (IC50: 0.77-1.45 μM). P2 showed prominent activity-induced cell apoptosis and arrested cell cycles at the G1 phase. The binding constants (Kb) of the complex with calf thymus DNA (CT-DNA) and HSA were quantitatively evaluated using fluorescence spectroscopy in the range of 0.17-1.56 × 104 M-1 and 0.88-3.21 × 105 M-1, respectively. The average binding site (n) number was close to 1. Moreover, the structure of HSA and the P2 complex adduct solved at the resolution of 2.48 Å revealed that one PZA-coordinated nitrosylruthenium complex bound at the subdomain I of HSA via a noncoordinative bond. HSA could serve as a potential nano-delivery system. This study provides a framework for the rational design of metal-based drugs.
Collapse
Affiliation(s)
- Hehe Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yating Pang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Chaoyang Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zhigang Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lili Guo
- The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Yafeng Li
- The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Lili Guo
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
de Araujo-Neto JH, Guedes APM, Leite CM, Moraes CAF, Santos AL, Brito RDS, Rocha TL, Mello-Andrade F, Ellena J, Batista AA. "Half-Sandwich" Ruthenium Complexes with Alizarin as Anticancer Agents: In Vitro and In Vivo Studies. Inorg Chem 2023; 62:6955-6969. [PMID: 37099760 DOI: 10.1021/acs.inorgchem.3c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Upon exploration of the chemistry of the combination of ruthenium/arene with anthraquinone alizarin (L), three new complexes with the general formulas [Ru(L)Cl(η6-p-cymene)] (C1), [Ru(L)(η6-p-cymene)(PPh3)]PF6 (C2), and [Ru(L)(η6-p-cymene)(PEt3)]PF6 (C3) were synthesized and characterized using spectroscopic techniques (mass, IR, and 1D and 2D NMR), molar conductivity, elemental analysis, and X-ray diffraction. Complex C1 exhibited fluorescence, such as free alizarin, while in C2 and C3, the emission was probably quenched by monophosphines and the crystallographic data showed that hydrophobic interactions are predominant in intermolecular contacts. The cytotoxicity of the complexes was evaluated in the MDA-MB-231 (triple-negative breast cancer), MCF-7 (breast cancer), and A549 (lung) tumor cell lines and MCF-10A (breast) and MRC-5 (lung) nontumor cell lines. Complexes C1 and C2 were more selective to the breast tumor cell lines, and C2 was the most cytotoxic (IC50 = 6.5 μM for MDA-MB-231). In addition, compound C1 performs a covalent interaction with DNA, while C2 and C3 present only weak interactions; however, internalization studies by flow cytometry and confocal microscopy showed that complex C1 does not accumulate in viable MDA-MB-231 cells and is detected in the cytoplasm only after cell permeabilization. Investigations of the mechanism of action of the complexes indicate that C2 promotes cell cycle arrest in the Sub-G1 phase in MDA-MB-231, inhibits its colony formation, and has a possible antimetastatic action, impeding cell migration in the wound-healing experiment (13% of wound healing in 24 h). The in vivo toxicological experiments with zebrafish indicate that C1 and C3 exhibit the most zebrafish embryo developmental toxicity (inhibition of spontaneous movements and heartbeats), while C2, the most promising anticancer drug in the in vitro preclinical tests, revealed the lowest toxicity in in vivo preclinical screening.
Collapse
Affiliation(s)
- João Honorato de Araujo-Neto
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Adriana P M Guedes
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Celisnolia M Leite
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Carlos André F Moraes
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Andressa L Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Rafaella da S Brito
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Thiago L Rocha
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Francyelli Mello-Andrade
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
- Instituto Federal de Educação Ciência e Tecnologia (IFG), Goiânia, Goiás 74055-110, Brazil
| | - Javier Ellena
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
4
|
Selvaraj FSS, Samuel M, Karuppiah AK, Raman N. Transition metal complexes incorporating lawsone: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2142908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Freeda Selva Sheela Selvaraj
- Research Department of Chemistry, VHNSN College, Virudhunagar, 626 001, India
- Madurai Kamaraj University, Madurai, 625021, India
| | - Michael Samuel
- Research Department of Chemistry, VHNSN College, Virudhunagar, 626 001, India
- Madurai Kamaraj University, Madurai, 625021, India
| | - Arunsunai Kumar Karuppiah
- Research Department of Chemistry, VHNSN College, Virudhunagar, 626 001, India
- Madurai Kamaraj University, Madurai, 625021, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, 626 001, India
- Madurai Kamaraj University, Madurai, 625021, India
| |
Collapse
|
5
|
The Antitumor and Toxicity Effects of Ruthenium(II) Complexes on Heterotopic Murine Colon Carcinoma Model. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
The aim of the present study was to examine the antitumor and toxicity effects of ruthenium(II) complexes, [Ru(Cltpy)(en)Cl][Cl] (Ru-1) and [Ru(Cl-tpy)(dach)Cl][Cl] (Ru-2) on heterotopic murine colon carcinoma model.
For tumor induction, 1×106 CT26 cells suspended in 100 μl of DMEM were injected subcutaneously into flank of male BALB/c mice. Treatment groups were as follows: Ru-1, Ru-2, oxaliplatin and control (saline). The intraperitoneal administration of the tested complexes began on 6th day after CT26 cells inoculation. Each complex was administered at dose of 5 mg/kg, twice weekly, four doses in total. To assess toxicity, serum values of urea, creatinine, AST and ALT were determined and histopathological analysis of organs and tumor were performed. In order to assess the effects of Ru(II) complexes on markers of oxidative stress and antioxidant defense system, we determined the TBARS, GSH, SOD and CAT in the homogenate of tumor, heart, liver, lungs and kidney tissues.
The findings indicate that Ru-1 and Ru-2 exerts equal or better antitumor activity in comparison with oxaliplatin, but with pronounced toxic effects such as reduced survival rate, cardiotoxicity, nephrotoxicity and hepatotoxicity. The increased index of lipid peroxidation in the tissues of the kidneys and heart, but decreased in tumor tissue, after Ru(II) complexes administration, indicates the importance of the induction of oxidative stress as a possible mechanism of nephrotoxicity and cardiotoxicity, but not the mechanism by which they realize antitumor activity.
Additional studies are needed to elucidate the mechanism of antitumor activity and toxicity of the Ru(II) complexes.
Collapse
|
6
|
De Grandis RA, Oliveira KM, Guedes APM, dos Santos PWS, Aissa AF, Batista AA, Pavan FR. A Novel Ruthenium(II) Complex With Lapachol Induces G2/M Phase Arrest Through Aurora-B Kinase Down-Regulation and ROS-Mediated Apoptosis in Human Prostate Adenocarcinoma Cells. Front Oncol 2021; 11:682968. [PMID: 34249731 PMCID: PMC8264259 DOI: 10.3389/fonc.2021.682968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Lapachol is a well-studied natural product that has been receiving great interest due to its anticancer properties that target oxidative stress. In the present work, two novel lapachol-containing ruthenium(II) complexes [Ru(Lap)(dppm)(bipy)]PF6 (1) and [Ru(Lap)(dppm)(phen)]PF6 (2) [Lap = lapachol, dppm = 1,1'-bis(diphosphino)methane, bipy = 2,2'-bipyridine, phen = 1,10-phenantroline] were synthesized, fully characterized, and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures, as well as in a 3D model of multicellular spheroids formed from DU-145 human prostate adenocarcinoma cells. Furthermore, the complex (2) suppressed the colony formation, induced G2/M-phase arrest, and downregulated Aurora-B. The mechanism studies suggest that complex (2) stimulate the overproduction of reactive oxygen species (ROS) and triggers caspase-dependent apoptosis as a result of changes in expression of several genes related to cell proliferation and caspase-3 and -9 activation. Interestingly, we found that N-acetyl-L-cysteine, a ROS scavenger, suppressed the generation of intracellular ROS induced by complex (2), and decreased its cytotoxicity, indicating that ROS-mediated DNA damage leads the DU-145 cells into apoptosis. Overall, we highlighted that coordination of lapachol to phosphinic ruthenium(II) compounds considerably improves the antiproliferative activities of resulting complexes granting attractive selectivity to human prostate adenocarcinoma cells. The DNA damage response to ROS seems to be involved in the induction of caspase-mediated cell death that plays an important role in the complexes' cytotoxicity. Upon further investigations, this novel class of lapachol-containing ruthenium(II) complexes might indicate promising chemotherapeutic agents for prostate cancer therapy.
Collapse
Affiliation(s)
- Rone A. De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
- School of Medicine, University of Araraquara, Araraquara, Brazil
| | - Katia M. Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Alexandre F. Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Alzir A. Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Fernando R. Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
7
|
Song L, Bai H, Liu C, Gong W, Wang A, Wang L, Zhao Y, Zhao X, Wang H. Synthesis, Biomacromolecular Interactions, Photodynamic NO Releasing and Cellular Imaging of Two [RuCl(qn)(Lbpy)(NO)]X Complexes. Molecules 2021; 26:molecules26092545. [PMID: 33925453 PMCID: PMC8123785 DOI: 10.3390/molecules26092545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Two light-activated NO donors [RuCl(qn)(Lbpy)(NO)]X with 8-hydroxyquinoline (qn) and 2,2′-bipyridine derivatives (Lbpy) as co-ligands were synthesized (Lbpy1 = 4,4′-dicarboxyl-2,2′-dipyridine, X = Cl− and Lbpy2 = 4,4′-dimethoxycarbonyl-2,2′-dipyridine, X = NO3−), and characterized using ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H NMR), elemental analysis and electrospray ionization mass spectrometry (ESI-MS) spectra. The [RuCl(qn)(Lbpy2)(NO)]NO3 complex was crystallized and exhibited distorted octahedral geometry, in which the Ru–N(O) bond length was 1.752(6) Å and the Ru–N–O angle was 177.6(6)°. Time-resolved FT-IR and electron paramagnetic resonance (EPR) spectra were used to confirm the photoactivated NO release of the complexes. The binding constant (Kb) of two complexes with human serum albumin (HSA) and DNA were quantitatively evaluated using fluorescence spectroscopy, Ru-Lbpy1 (Kb~106 with HSA and ~104 with DNA) had higher affinity than Ru-Lbpy2. The interactions between the complexes and HSA were investigated using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and EPR spectra. HSA can be used as a carrier to facilitate the release of NO from the complexes upon photoirradiation. The confocal imaging of photo-induced NO release in living cells was successfully observed with a fluorescent NO probe. Moreover, the photocleavage of pBR322 DNA for the complexes and the effect of different Lbpy substituted groups in the complexes on their reactivity were analyzed.
Collapse
Affiliation(s)
- Luna Song
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Hehe Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Chenyang Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Li Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Yi Zhao
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Taiyuan 030006, China;
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA;
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
- Correspondence: ; Tel./Fax: +86-351-7010699
| |
Collapse
|