1
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
2
|
ElNaggar MH, Elgazar AA, Gamal G, Hamed SM, Elsayed ZM, El-Ashrey MK, Abood A, El Hassab MA, Soliman AM, El-Domany RA, Badria FA, Supuran CT, Eldehna WM. Identification of sulphonamide-tethered N-((triazol-4-yl)methyl)isatin derivatives as inhibitors of SARS-CoV-2 main protease. J Enzyme Inhib Med Chem 2023; 38:2234665. [PMID: 37434404 PMCID: PMC10405867 DOI: 10.1080/14756366.2023.2234665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide 6b showed promising inhibitory activity with an IC50= 0.249 µM. Additionally, 6b inhibited viral cell proliferation with an IC50 of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained in vitro findings.
Collapse
Affiliation(s)
- Mai H. ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada Gamal
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shimaa M. Hamed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira Abood
- Chemistry of Natural and microbial products, National Research center, Egypt
- Department of Bioscience, University of Kent, Canterbury, UK
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| |
Collapse
|
3
|
Romagnoli R, De Ventura T, Manfredini S, Baldini E, Supuran CT, Nocentini A, Brancale A, Bortolozzi R, Manfreda L, Viola G. Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold. J Enzyme Inhib Med Chem 2023; 38:2270180. [PMID: 37850364 PMCID: PMC10586084 DOI: 10.1080/14756366.2023.2270180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Andrea Brancale
- Vysoká Škola Chemicko-Technologická v Praze, Prague, Czech Republic
| | - Roberta Bortolozzi
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, Section of Pharmacology, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| |
Collapse
|
4
|
Saied S, Shaldam M, Elbadawi MM, Giovannuzzi S, Nocentini A, Almahli H, Salem R, Ibrahim TM, Supuran CT, Eldehna WM. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties. Eur J Med Chem 2023; 259:115707. [PMID: 37556946 DOI: 10.1016/j.ejmech.2023.115707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
In the current medical era, the utilization of a single small molecule to simultaneously target two distinct molecular targets is emerging as a highly effective strategy in the battle against cancer. Carbonic Anhydrase (CA) and Vascular-Endothelial Growth Factor (VEGF) are genes that are activated in response to low oxygen levels (hypoxia) and play a role in the development and progression of tumors in hypoxic conditions. Herein we report the design, synthesis, and biological assessment of a series of novel indolinone-based benzenesulfonamides (8a-k, 11a-d, 15a-d, and 16) as potential dual inhibitors for cancer-associated hCA IX/XII and VEGFR-2. All the synthesized sulfonamides were assessed for their inhibitory effect against four CA isoforms I, II, IX, and XII where they displayed varying degrees of hCA inhibition. The most effective and selective hCA IX and XII inhibitors 8g, 8j and 15b were chosen to be tested for their in vitro inhibitory impact against VEGFR-2 as well as their antiproliferative impact against VEGFR-2 overexpressing MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, molecular docking studies were conducted within the hCA IX, XII, and VEGFR-2 active sites to explain the observed inhibitory results.
Collapse
Affiliation(s)
- Samaa Saied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
5
|
Kumar A, Arya P, Sharma V, Giovannuzzi S, Raghav N, Supuran CT, Sharma PK. Potent inhibitors of tumor associated carbonic anhydrases endowed with cathepsin B inhibition. Arch Pharm (Weinheim) 2023; 356:e2300349. [PMID: 37704930 DOI: 10.1002/ardp.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Twenty-one novel extended analogs of acetazolamide were synthesized and screened in vitro for their inhibition efficacy against human carbonic anhydrase (hCA) isoforms I, II, IX, XII, and cathepsin B. The majority of the compounds were found to be effective inhibitors of tumor-associated hCA IX and XII, and poor inhibitors of cytosolic hCA I. Despite the strong to moderate inhibition potential possessed by these compounds toward another cytosolic isoform hCA II, some of them demonstrated better potency against hCA IX and/or XII isoforms as compared to hCA II. Four compounds (11f, 11g, 12c, and 12g) effectively inhibited hCA IX and/or XII isoforms with considerable selectivity over the off-targets hCA I and II. Interestingly, five compounds, including 11f, 11g, 12c, 12d, and 12g, inhibited hCA IX even better than the clinically used acetazolamide. Some of the novel synthesized compounds exhibited higher anti-cathepsin B potential than acetazolamide, with % inhibition of around 50%, at a concentration of 10-7 M. Further, two compounds (12g and 12c) that showed effective and selective inhibition activity profiles against hCA IX and XII were additionally found to be effective inhibitors of cathepsin B.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
6
|
Mahapatra M, Mohapatra P, Pakeeraiah K, Bandaru RK, Ahmad I, Mal S, Dandela R, Sahoo SK, Patel H, Paidesetty SK. In-vitro anticancer evaluation of newly designed and characterized tri/tetra-substituted imidazole congeners- maternal embryonic leucine zipper kinase inhibitors: Molecular docking and MD simulation approaches. Int J Biol Macromol 2023; 249:126084. [PMID: 37532192 DOI: 10.1016/j.ijbiomac.2023.126084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by 1H/13C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction. The structure and crystallinity of compound 4d have been confirmed by single XRD analysis. The synthesized molecules were screened for their in vitro anti-cancer properties in triple negative breast cancer cell line (MDA-MB-231), pancreatic cancer cell lines (MIA PaCa-2) and oral squamous cell carcinoma cell line (H357) and results indicated that all the compounds inhibited the cell proliferation in a concentration-dependent manner at different time points. The compounds 4b and 6d were found to be effective against the S. aureus bacterial strain whereas only compound 4d fairly inhibited the fungal strain of T. rubrum with a MIC 12.5 μg/mL. Molecular docking study reveals good interaction of the synthesized compounds with known target MELK involved in oncogenesis having high binding profiles. The lead compound 6c was further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | | | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Ravi Kumar Bandaru
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar, Odisha 751024, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India; Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar, Odisha 751024, India
| | | | - Harun Patel
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
7
|
Elsawi AE, Elbadawi MM, Nocentini A, Almahli H, Giovannuzzi S, Shaldam M, Salem R, Ibrahim TM, Abdel-Aziz HA, Supuran CT, Eldehna WM. 1,5-Diaryl-1,2,4-triazole Ureas as New SLC-0111 Analogues Endowed with Dual Carbonic Anhydrase and VEGFR-2 Inhibitory Activities. J Med Chem 2023; 66:10558-10578. [PMID: 37501287 DOI: 10.1021/acs.jmedchem.3c00721] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Presently, dual targeting by a single small molecule stands out as an effective cancer-fighting weapon. Carbonic anhydrase (CA) and vascular-endothelial growth factor (VEGF) are hypoxia-activatable genes that are implicated in tumorigenesis and progression of hypoxic tumors at different levels. Herein, we designed and synthesized 30 1,5-diaryl-1,2,4-triazole-tethered sulfonamides (11a-f, 12a-l, 13a-f, 15a-f) as novel SLC-0111 analogues with dual CA IX/XII and VEGFR-2 inhibitory activities. The 4-fluorophenyl SLC-0111 tail was replaced by substituted 1,5-diaryl-1,2,4-triazoles. Changing the sulfamoyl motif position provided regioisomers 11a-f and 12a-l. Elongation of the ureido linker yielded derivatives 15a-f. Inhibitory evaluations included a panel of hCAs (hCA I, II, IX, and XII) and screening against 60 cancer cell lines. Promising candidates were assessed for VEGFR-2 inhibition and selectivity and further evaluated on breast cancer cell lines (MCF-7 and T-47D) and the non-tumorigenic (MCF-10A) cells. Molecular docking studies explored the binding modes of the sulfonamides against hCA IX/XII and VEGFR-2 kinase.
Collapse
Affiliation(s)
- Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| |
Collapse
|
8
|
Eldehna WM, Mohammed EE, Al-Ansary GH, Berrino E, Elbadawi MM, Ibrahim TM, Jaballah MY, Al-Rashood ST, Binjubair FA, Celik M, Nocentini A, Elbarbry FA, Sahin F, Abdel-Aziz HA, Supuran CT, Fares M. Design and synthesis of 6-arylpyridine-tethered sulfonamides as novel selective inhibitors of carbonic anhydrase IX with promising antitumor features toward the human colorectal cancer. Eur J Med Chem 2023; 258:115538. [PMID: 37321108 DOI: 10.1016/j.ejmech.2023.115538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Hypoxia, a characteristic feature of solid tumors, develops as a result of excessive cell proliferation and rapid tumor growth exceeding the oxygen supply, and can result in angiogenesis activation, increased invasiveness, aggressiveness, and metastasis, leading to improved tumor survival and suppression of anticancer drug therapeutic impact. SLC-0111, a ureido benzenesulfonamide, is a selective human carbonic anhydrase (hCA) IX inhibitor in clinical trials for the treatment of hypoxic malignancies. Herein, we describe the design and synthesis of novel 6-arylpyridines 8a-l and 9a-d as structural analogues of SLC-0111, in the aim of exploring new selective inhibitors for the cancer-associated hCA IX isoform. The para-fluorophenyl tail in SLC-0111 was replaced by the privileged 6-arylpyridine motif. Moreover, both ortho- and meta-sulfonamide regioisomers, as well as an ethylene extended analogous were developed. All 6-arylpyridine-based SLC-0111 analogues were screened in vitro for their inhibitory potential against a panel of hCAs (hCA I, II, IV and IX isoforms) using stopped-flow CO2 hydrase assay. In addition, the anticancer activity was firstly explored against a panel of 57 cancer cell lines at the USA NCI-Developmental Therapeutic Program. Compound 8g emerged as the best anti-proliferative candidate with mean GI% value equals 44. Accordingly, a cell viability assay (MTS) for 8g was applied on colorectal HCT-116 and HT-29 cancer cell lines as well as on the healthy HUVEC cells. Thereafter, Annexin V-FITC apoptosis detection, cell cycle, TUNEL, and qRT-PCR, colony formation, and wound healing assays were applied to gain mechanistic insights and to understand the behavior of colorectal cancer cells upon the treatment of compound 8g. Also, a molecular docking analysis was conducted to provide in silico insights into the reported hCA IX inhibitory activity and selectivity.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Eslam E Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Emanuela Berrino
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Meltem Celik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Fawzy A Elbarbry
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR, 97123, USA
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
9
|
Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates. Molecules 2023; 28:molecules28031009. [PMID: 36770674 PMCID: PMC9919727 DOI: 10.3390/molecules28031009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor cell lines and non-malignant fibroblasts. As a result, the best inhibitors were derived from betulin and glycyrrhetinic acid while those derived from ursolic or oleanolic acid were significantly weaker inhibitors but also of diminished cytotoxicity. A betulin-derived conjugate held a Ki = 0.129 μM and an EC50 = 8.5 μM for human A375 melanoma cells.
Collapse
|
10
|
Oudah KH, Mahmoud WR, Awadallah FM, Taher AT, Abbas SES, Allam HA, Vullo D, Supuran CT. Design and synthesis of some new benzoylthioureido benzenesulfonamide derivatives and their analogues as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:12-23. [PMID: 36305274 PMCID: PMC9621292 DOI: 10.1080/14756366.2022.2132485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present investigation reports the design and synthesis of three series of benzoylthioureido derivatives bearing either benzenesulfonamide 7a–f, benzoic acid 8a–f or ethylbenzoate 9a–f moieties. The synthesised compounds were screened for their carbonic anhydrase inhibitory activity (CAI) against four isoforms hCA I, II, IX, and XII. Compounds 7a, 7b, 7c, and 7f exhibited a potent inhibitory activity towards hCAI (Kis = 58.20, 56.30, 33.00, and 43.00 nM), respectively compared to acetazolamide (AAZ) and SLC-0111 (Kis = 250.00 and 5080.00 nM). Compounds 7a, 7b, 7c, 7e, and 7f elicited selectivity over h CA II (Kis = 2.50, 2.10, 56.60,39.60 and 39.00 nM) respectively, relative to AAZ and SLC-0111(Kis = 12.10 and 960.00 nM). Also, compounds 7c, 7f, and 9e displayed selectivity against the tumour-associated isoform hCA IX (Kis = 31.20, 30.00 and 29.00 nM) respectively, compared to AAZ and SLC-0111 (Kis = 25.70 and 45.00 nM). Additionally, compounds 8a and 8f revealed a moderate to superior selectivity towards hCAXII (Kis = 17.00 and 11.00 nM) relative to AAZ and SLC-0111(Kis = 5.70 and 45.00 nM). Molecular docking and ADME prediction studies were performed on the most active compounds to shed light on their interaction with the hot spots of the active site of CA isoforms, in addition to prediction of their pharmacokinetic and physicochemical properties.
Collapse
Affiliation(s)
- Khulood H. Oudah
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Nasiriyah, Iraq
| | - Walaa R. Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fadi M. Awadallah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University(O6U), Giza, Egypt
| | - Safinaz E.-S Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Daniela Vullo
- Department NEUROFARBA – Pharmaceutical and Nutraceutical section, University of Firenze, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical section, University of Firenze, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Mahapatra M, Mekap SK, Mal S, Sahoo J, Sahoo SK, Paidesetty SK. Coumaryl-sulfonamide moiety: Unraveling their synthetic strategy and specificity toward hCA IX/XII, facilitating anticancer drug development. Arch Pharm (Weinheim) 2023; 356:e2200508. [PMID: 36587981 DOI: 10.1002/ardp.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Suman K Mekap
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, R. Sitapur, Odisha, India
| | - Suvadeep Mal
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arka Jain University, Jameshedpur, Jharkand, India
| | | | - Sudhir K Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Najm MAA, Mahmoud WR, Taher AT, Abbas SES, Awadallah FM, Allam HA, Vullo D, Supuran CT. Design and synthesis of some new benzoylthioureido phenyl derivatives targeting carbonic anhydrase enzymes. J Enzyme Inhib Med Chem 2022; 37:2702-2709. [PMID: 36168122 PMCID: PMC9542353 DOI: 10.1080/14756366.2022.2126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The present study aimed to develop potent carbonic anhydrase inhibitors (CAIs). The design of the target compounds was based on modifying the structure of the ureido-based carbonic anhydrase inhibitor SLC-0111. Six series of a substituted benzoylthioureido core were prepared featuring different zinc-binding groups; the conventional sulphamoyl group 4a-d and 12a-c, its bioisosteric carboxylic acid group 5a-d and 13a-c or the ethyl carboxylate group 6a-d and 14a-c as potential prodrugs. All compounds were assessed for their carbonic anhydrase (CA) inhibitory activity against a panel of four physiologically relevant human CA isoforms hCA I and hCA II, and hCA IX, and hCA XII. Compounds 4a, 4b, 4c, 4d, 5d, 12a, and 12c revealed significant inhibitory activity against hCA I that would highlight these compounds as promising drug candidates for the treatment of glaucoma.
Collapse
Affiliation(s)
- Mazin A A Najm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), Giza, Egypt
| | - Safinaz E-S Abbas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
13
|
Eldehna WM, Taghour MS, Al-Warhi T, Nocentini A, Elbadawi MM, Mahdy HA, Abdelrahman MA, Alotaibi OJ, Aljaeed N, Elimam DM, Afarinkia K, Abdel-Aziz HA, Supuran CT. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2022; 37:531-541. [PMID: 34991416 PMCID: PMC8745369 DOI: 10.1080/14756366.2021.2024528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Mostafa M. Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaaeldin M. Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
14
|
Elbadawi MM, Eldehna WM, Abd El-Hafeez AA, Somaa WR, Albohy A, Al-Rashood ST, Agama KK, Elkaeed EB, Ghosh P, Pommier Y, Abe M. 2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: synthesis, biological evaluation, and molecular modelling insights. J Enzyme Inhib Med Chem 2022; 37:349-372. [PMID: 34923887 PMCID: PMC8725837 DOI: 10.1080/14756366.2021.2015344] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023] Open
Abstract
In this study, different assortments of 2-arylquinolines and 2,6-diarylquinolines have been developed. Recently, we have developed a new series of 6,7-dimethoxy-4-alkoxy-2-arylquinolines as Topoisomerase I (TOP1) inhibitors with potent anticancer activity. Utilising the SAR outputs from this study, we tried to enhance anticancer and TOP1 inhibitory activities. Though target quinolines demonstrated potent antiproliferative effect, specifically against colorectal cancer DLD-1 and HCT-116, they showed weak TOP1 inhibition which may be attributable to their non-coplanarity. Thereafter, screening against kinase panel revealed their dual inhibitory activity against EGFR and FAK. Quinolines 6f, 6h, 6i, and 20f were the most potent EGFR inhibitors (IC50s = 25.39, 20.15, 22.36, and 24.81 nM, respectively). Meanwhile, quinolines 6f, 6h, 6i, 16d, and 20f exerted the best FAK inhibition (IC50s = 22.68, 14.25, 18.36, 17.36, and 15.36 nM, respectively). Finally, molecular modelling was employed to justify the promising EGFR/FAK inhibition. The study outcomes afforded the first reported quinolines with potent EGFR/FAK dual inhibition.
Collapse
Affiliation(s)
- Mostafa M. Elbadawi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Hiroshima, Japan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Warda R. Somaa
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Keli K. Agama
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Al-Warhi T, Elbadawi MM, Bonardi A, Nocentini A, Al-Karmalawy AA, Aljaeed N, Alotaibi OJ, Abdel-Aziz HA, Supuran CT, Eldehna WM. Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem 2022; 37:2635-2643. [PMID: 36146927 PMCID: PMC9518259 DOI: 10.1080/14756366.2022.2124409] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In this work, different series of benzothiazole-based sulphonamides 8a-c, 10, 12, 16a-b and carboxylic acids 14a-c were developed as novel SLC-0111 analogues with the goal of generating potent carbonic anhydrase (CA) inhibitors. The adopted strategy involved replacing the 4-fluorophenyl tail in SLC-0111 with a benzothiazole motif that attached to the ureido linker to produce compounds 8c and its regioisomers 8a-b. In addition, the ureido spacer was elongated by methylene or ethylene groups to afford the counterparts 10 and 12. In turn, the primary sulfamoyl zinc binding group (ZBG) was either substituted or replaced by carboxylic acid functionality in order to provide the secondary sulphonamide-based SLC-0111 analogues 16a-b, and the carboxylic acid derivatives 14a-c, respectively. All compounds (8a-c, 10, 12, 14a-c and 16a-b) were tested for their ability to inhibit CA isoforms CA I, II, IX and XII. Additionally, the in vitro anticancer properties of the developed CAIs were evaluated.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-sheikh, Egypt
| | - Alessandro Bonardi
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessio Nocentini
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, Egypt
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ohoud J Alotaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Egypt
| | - Claudiu T Supuran
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-sheikh, Egypt
| |
Collapse
|
16
|
Insights into the effect of elaborating coumarin-based aryl enaminones with sulfonamide or carboxylic acid functionality on carbonic anhydrase inhibitory potency and selectivity. Bioorg Chem 2022; 126:105888. [DOI: 10.1016/j.bioorg.2022.105888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
|
17
|
Elbadawi MM, Eldehna WM, Nocentini A, Somaa WR, Al-Rashood ST, Elkaeed EB, El Hassab MA, Abdel-Aziz HA, Supuran CT, Fares M. Development of 4-((3-oxo-3-phenylpropyl)amino)benzenesulfonamide derivatives utilizing tail/dual-tail approaches as novel carbonic anhydrase inhibitors. Eur J Med Chem 2022; 238:114412. [PMID: 35551035 DOI: 10.1016/j.ejmech.2022.114412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023]
Abstract
In the current work, we adopted the tail/dual tail approaches to design and synthesize the benzenesulfonamide derivatives 6a-b, 8, 10a-b, 12a-b, 14, and 16 as new SLC-0111 analogs endowed with carbonic anhydrase (CA) inhibitory activity. All the prepared benzenesulfonamide derivatives were tested for their inhibitory action towards hCA isoforms; hCA I, II, IX, and XII. The results revealed their ability to affect the examined isoforms in variable degrees with KI ranges: 49.3-6459 nM for CA I, 5.1-4171 nM for CA II, 9.4-945.1 nM for CA IX, and 5.2-1159 nM for CA XII. As expected, appending a second hydrophilic tail (ethanolamine) in compound 16 significantly enhanced the inhibitory activities towards hCA IX and hCA XII isoforms by about 5-fold in comparison to its single tail analogue 6c (KI = 51.5 and 28.2 nM for 6cvs. 10.2 and 5.2 nM for 16, respectively). Moreover, SAR analysis pointed out the significance of grafting the sulfamoyl functionality at para-position, as well as the incorporation of a bulky hydrophobic tail for CA inhibitory activity. The most potent hCA IX inhibitors (6f and 16) displayed efficient cell growth inhibitory activity against breast cancer cell lines; T-47D (IC50 = 19 and 10.9 μM, respectively) and MCF-7 (IC50 = 7.5 and 5.7 μM, respectively).
Collapse
Affiliation(s)
- Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Warda R Somaa
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt; School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Elbadawi MM, Khodair AI, Awad MK, Kassab SE, Elsaady MT, Abdellatif KR. Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Elimam DM, Eldehna WM, Salem R, Bonardi A, Nocentini A, Al-Rashood ST, Elaasser MM, Gratteri P, Supuran CT, Allam HA. Natural inspired ligustrazine-based SLC-0111 analogues as novel carbonic anhydrase inhibitors. Eur J Med Chem 2022; 228:114008. [PMID: 34871842 DOI: 10.1016/j.ejmech.2021.114008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
Abstract
Ligustrazine is the principle bioactive alkaloid in the widely-used Chinese herb Chuan Xiong rhizome. Herein, a series of novel derivatives has been designed as human carbonic anhydrases inhibitors (hCAIs) starting from the natural product Ligustrazine inserted as a tail instead of the 4-fluorophenyl tail of SLC-0111, a front-runner selective hCA IX inhibitor currently in clinical trials as antitumor/antimetastatic agent. Other derivatives were designed via incorporation of different linkers, of amide and ester type, or incorporation of different zinc anchoring groups such as secondary sulfamoyl and carboxylic acid functionalities. The newly designed molecules were prepared following different synthetic pathways, and were assessed for their inhibitory actions against four isoforms: the widespread cytosolic (hCA I and II), and the transmembrane tumor-related (hCA IX and XII). The primary sulfonamides efficiently inhibited the target hCA IX and hCA XII in the nanomolar range (KIs: 6.2-951.5 nM and 3.3-869.3 nM, respectively). The most selective hCA IX inhibitors 6c and 18 were assessed for their potential anticancer effects, and displayed anti-proliferative activity against MCF-7 cancer cell line with IC50s of 11.9 and 36.7 μM, respectively. Molecular modelling studies unveiled the relationship between structural features and inhibitory profiles against the off-target hCA II and the target, tumor-related isoforms hCA IX and XII.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
21
|
Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem 2021; 226:113837. [PMID: 34530384 DOI: 10.1016/j.ejmech.2021.113837] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Currently, the arise of drug resistance and undesirable off-target effects of anti-cancer agents are major challenges for cancer treatment, which energizes medicinal chemists to develop more anti-cancer agents with high efficiency and low toxicity continuously. Sulfonamide derivatives are a class of promising compounds with diverse biological activities including anti-cancer, and parts of them have been marketed for cancer therapy, such as Belinostat, ABT-199 and Amsacrine. In this review, we summed up the recent advances of sulfonamide derivatives as potential anti-cancer agents based on the anti-cancer targets, such as aromatase, carbonic anhydrase (CA), anti-apoptotic B-cell lymphoma-2 (Bcl-2) proteins, topoisomerase and phosphatidylinositol 3-kinase (PI3K), and elucidated the corresponding structure-activity relationships (SARs) of most sulfonamide derivatives. We hope this review could provide a clear insight for medicinal chemists in the rational design of more potent and bio-target specific anti-cancer agents.
Collapse
|
22
|
Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021; 30:1197-1208. [PMID: 34865569 DOI: 10.1080/13543784.2021.2014813] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hypoxic tumors, unlike normal tissues, overexpress proteins involved in oxygen sensing, metabolism, pH regulation, angiogenesis, immunological response, and other survival mechanisms, which are under investigation as antitumor drug targets. AREAS COVERED Carbonic anhydrase (CA) isoforms CA IX and XII are among these validated antitumor/antimetastatic drug targets, with several of their inhibitors undergoing preclinical or clinical-stage investigations. Alone or in combination with other chemotherapeutic agents or radiotherapy, CA IX/XII inhibitors, such as SLC-0111, SLC-149, S4, 6A10, etc., were shown to inhibit the growth of the primary tumor, metastases, and invasiveness of many tumor types, being also amenable for the development of imaging agents. EXPERT OPINION SLC-0111 is the most investigated agent, being in Phase Ib/II clinical trials. In addition to its interference with extracellular acidifications, it has been shown to promote ferroptosis in cancer cells, another antitumor mechanism of this compound and the entire class. A large number sulfonamide and non-sulfonamide inhibitors have been developed using SLC-0111 as lead in the last three years, together with hybrid agents incorporating CA inhibitors and other anticancer chemotypes, including cytotoxins, telomerase, thioredoxin or P-glycoprotein inhibitors, adenosine A2A receptor antagonists, pyrophosphatase/phosphodiesterase-3 inhibitors or antimetabolites. All of them showed significant antitumor activity.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Università Degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
23
|
Eldeeb AH, Abo-Ashour MF, Angeli A, Bonardi A, Lasheen DS, Elrazaz EZ, Nocentini A, Gratteri P, Abdel-Aziz HA, Supuran CT. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2021; 221:113486. [PMID: 33965860 DOI: 10.1016/j.ejmech.2021.113486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
New series of benzenesulfonamide and benzoic acid derivatives were designed and synthesized using tail/dual tail approach to improve potency and selectivity as carbonic anhydrase inhibitors. The synthesized compounds evaluated as CAIs against isoforms hCA I, II, IV and IX with acetazolamide (AAZ) as standard inhibitor. The benzenesulfonamide derivatives 7a-d, 8a-h, 12a-c, 13a and 15a-c showed moderate to potent inhibitory activity with selectivity toward isoform hCA II, especially, compound 13a with (Ki = 7.6 nM), while the benzoic acid analogues 12d-f, 13b and 15d-f didn't show any activity except compounds 12d,f and 15e that showed weak activity. Additionally, molecular docking was performed for compounds 7a, 8a, 8e, 12a, 13a and 15a on isoform hCA I, II to illustrate the possible interaction with the active site to justify the inhibitory activity.
Collapse
Affiliation(s)
- Assem H Eldeeb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|