1
|
Sheng A, Zhang H, Li Q, Chen S, Wang Q. Application of Intelligent Response Fluorescent Probe in Breast Cancer. Molecules 2024; 29:4294. [PMID: 39339288 PMCID: PMC11434508 DOI: 10.3390/molecules29184294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
As one of the leading cancers threatening women's lives and health, breast cancer is challenging to treat and often irreversible in advanced cases, highlighting the critical importance of early detection and intervention. In recent years, fluorescent probe technology, a revolutionary in vivo imaging tool, has gained attention in medical research for its ability to improve tumor visualization significantly. This review focuses on recent advances in intelligent, responsive fluorescent probes, particularly in the field of breast cancer, which are divided into five categories, near-infrared responsive, fluorescein-labeled, pH-responsive, redox-dependent, and enzyme-triggered fluorescent probes, each of which has a different value for application based on its unique biological response mechanism. In addition, this review also covers the strategy of combining fluorescent probes with various anti-tumor drugs, aiming to reveal the possibility of synergistic effects between the two in breast cancer treatment and provide a solid theoretical platform for the clinical translation of fluorescent probe technology, which is expected to promote the expansion of cancer treatment technology.
Collapse
Affiliation(s)
- Anqi Sheng
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China; (A.S.); (H.Z.)
- Technology Innovation Institute of Jilin Province, Changchun 130012, China; (Q.L.); (S.C.)
| | - Hao Zhang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China; (A.S.); (H.Z.)
| | - Qing Li
- Technology Innovation Institute of Jilin Province, Changchun 130012, China; (Q.L.); (S.C.)
| | - Shu Chen
- Technology Innovation Institute of Jilin Province, Changchun 130012, China; (Q.L.); (S.C.)
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130013, China; (A.S.); (H.Z.)
| |
Collapse
|
2
|
Xu H, Ye Z, Gao X, Dai Y, Luo Y, Han Z, Gu Y. Repurposing GnRH-A as a Near-Infrared Fluorescent Probe for Diagnosis and Surgical Navigation of Breast Cancer Tumors and Metastases. J Med Chem 2024; 67:12386-12398. [PMID: 38995618 DOI: 10.1021/acs.jmedchem.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Breast cancer, globally the most common cancer in women, presents significant challenges in treatment. Breast-conserving surgery (BCS), a less traumatic and painful alternative to radical mastectomy, not only preserves the breast's appearance but also supports postsurgical functional recovery. However, accurately identifying tumors, precisely delineating margins, and thoroughly removing metastases remain complex surgical challenges, exacerbated by the limitations of current imaging techniques, including poor tumor uptake and low signal contrast. Addressing these challenges, our study developed a series of GnRHR-targeted probes (YQGN-n) for fluorescence imaging and surgical navigation of breast cancer through a drug repositioning strategy. Notably, YQGN-7, with its high cellular affinity (Kd of 217.8 nM), demonstrates exceptional selectivity and specificity for breast cancer tumors, surpassing traditional imaging agents like ICG in tumor uptake and pharmacokinetic properties. Furthermore, YQGN-7's effectiveness in surgical navigation, both for primary breast tumors and metastases, highlights its potential as a revolutionary tool in BCS.
Collapse
Affiliation(s)
- Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuoyi Ye
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin Gao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yue Dai
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yang Luo
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
3
|
Gao X, Xu H, Ye Z, Chen X, Wang X, Chang Q, Gu Y. PDGFRβ targeted innovative imaging probe for pancreatic adenocarcinoma detection. Talanta 2023; 255:124225. [PMID: 36587427 DOI: 10.1016/j.talanta.2022.124225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The 5-year survival rate for pancreatic adenocarcinoma (PA) is less than 10%, making it one of the most lethal forms of cancer. Early-stage diagnosis and resection of the incipient lesions could increase the 4-year survival rate of PA up to 78%. Platelet-derived growth factor receptor β (PDGFRβ), an oncogenic key regulator for migration, proliferation and angiogenesis of cancer cells, has been proved to be aberrantly expressed in the majority of PA. Herein, by amino acid substitution strategy and surface plasmon resonance (SPR) analysis, we designed a novel PDGFRβ-targeting peptide (YQGX-10) with high affinity (Kd = 227.7 nM) and coupled it with a near-infrared fluorescent (NIRF) dye MPA for precisely detection of PA. Great binding affinity and specificity were displayed in a series of in vitro assays. NIRF imaging experiments demonstrated that the synthesized probe could be highly accumulated in xenograft and orthotopic BxPC-3 tumors and provide favorable tumor contrast in the mice, offering a potential novel approach for the early diagnosis of PA. Moreover, YQGX-10 could visualize tumor boundaries and minor lesions in BxPC-3 xenograft mice, shedding a new light on NIRF-guided tumor resection of PA. In addition, we successfully constructed the radioactive probe 99mTc-HYNIC-YQGX-10 for the diagnosis of PA with high specificity and sensitivity. In summary, the probe warrants further exploration for clinical translation in the early diagnosis and NIRF-guided surgery of PA.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Zhuoyi Ye
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Xin Chen
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Xin Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Qi Chang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China.
| |
Collapse
|
4
|
Wu Q, Zhou QH, Li W, Ren TB, Zhang XB, Yuan L. Evolving an Ultra-Sensitive Near-Infrared β-Galactosidase Fluorescent Probe for Breast Cancer Imaging and Surgical Resection Navigation. ACS Sens 2022; 7:3829-3837. [PMID: 36383027 DOI: 10.1021/acssensors.2c01752] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early diagnosis and therapy are clinically crucial in decreasing mortality from breast carcinoma. However, the existing probes have difficulty in accurately identifying the margins and contours of breast carcinoma due to poor sensitivity and specificity. There is an urgent need to develop high-sensitive fluorescent probes for the diagnosis of breast carcinoma and for differentiating tumors from normal tissues during surgery. β-Galactosidase is a significant biomarker, whose overexpression is closely associated with the progression of breast tumors. Herein, we have constructed a β-galactosidase-activated fluorescent probe NIR-βgal-2 through rational design and molecular docking engineering simulations. The probe displayed superior sensitivity (detection limit = 2.0 × 10-3 U/mL), great affinity (Km = 1.84 μM), and catalytic efficiency (kcat/Km = 0.24 μM-1 s-1) for β-galactosidase. Leveraging this probe, we demonstrated the differentiation of cancer cells overexpressing β-galactosidase from normal cells and then applied the probe for intraoperative guided excision of breast tumors. Moreover, we exhibited the application of NIR-βgal-2 for the successful resection of orthotopic breast tumors by "in situ spraying" and monitored a good prognostic recovery. This work may promote the application of enzyme-activated near-infrared fluorescent probes for the development of carcinoma diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian-Hui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Chen YH, Zhang TF, Liu YY, Zheng JH, Lin WX, Chen YK, Cai JH, Zou J, Li ZY. Identification of a 5-gene-risk score model for predicting luminal A-invasive lobular breast cancer survival. Genetica 2022; 150:299-316. [PMID: 35536451 DOI: 10.1007/s10709-022-00157-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/06/2022] [Indexed: 02/05/2023]
Abstract
Breast cancer is a devastating malignancy, among which the luminal A (LumA) breast cancer is the most common subtype. In the present study, we used a comprehensive bioinformatics approach in the hope of identifying novel prognostic biomarkers for LumA breast cancer patients. Transcriptomic profiling of 611 LumA breast cancer patients was downloaded from TCGA database. Differentially expressed genes (DEGs) between tumor samples and controls were first identified by differential expression analysis, before being used for the weighted gene co-expression network analysis. The subsequent univariate Cox regression and LASSO algorithm were used to uncover key prognostic genes for constructing multivariate Cox regression model. Patients were stratified into high-risk and low-risk groups according to the risk score, and subjected to multiple downstream analyses including survival analysis, gene set enrichment analysis (GSEA), inference on immune cell infiltration and analysis of mutation burden. Receiving operator curve analysis was also performed. A total of 7071 DEGs were first identified by edgeR package, pink module was found significantly associated with invasive lobular carcinoma (ILC). 105 prognostic genes and 9 predictors were identified, allowing the identification of a 5-key prognostic genes (LRRC77P, CA3, BAMBI, CABP1, ATP8A2) after intersection. These 5 genes, and the resulting Cox model, displayed good prognostic performance. Furthermore, distinct differences existed between two risk-score stratified groups at various levels. The identified 5-gene prognostic model will help deepen the understanding of the molecular and immunological mechanisms that affect the survival of LumA-ILC patients and guide and proper monitoring of these patients.
Collapse
Affiliation(s)
- Yi-Huan Chen
- Department of Ultrasound in Obstetrics and Gynecology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tao-Feng Zhang
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Yi-Yuan Liu
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Jie-Hua Zheng
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Wei-Xun Lin
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Yao-Kun Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Jie-Hui Cai
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Juan Zou
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Zhi-Yang Li
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
6
|
Shen D, Zhao H, Zeng P, Ge M, Shrestha S, Zhao W. Circular RNA circ_0001459 accelerates hepatocellular carcinoma progression via the miR-6165/IGF1R axis. Ann N Y Acad Sci 2022; 1512:46-60. [PMID: 35199365 PMCID: PMC9306989 DOI: 10.1111/nyas.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
An increasing amount of evidence shows that circular RNAs (circRNAs) have critical effects on cancer progression and development; however, the biological function and potential molecular mechanism of circRNAs in hepatocellular carcinoma (HCC) are still unclear. CircRNA sequencing was used to identify differentially expressed circRNAs between HCC tissue and adjacent normal tissue. We found that circ_0001459 expression was significantly elevated in HCC tissue and cell lines. Furthermore, in vitro and in vivo functional experiments were carried out to detect the effects of circ_0001459 on HCC growth and metastasis. Knockdown of circ_0001459 significantly inhibited the proliferation, migration, and invasion of HCC cells, whereas upregulation of circ_0001459 had the opposite effect. Moreover, bioinformatics analysis, dual‐luciferase reporter assay, RNA immunoprecipitation, and fluorescence in situ hybridization assays were used to predict and verify the interaction between circ_0001459, miR‐6165, and the target gene IGF1R. Downregulation of circ_0001459 decreased IGF1R expression and inhibited epithelial‐to‐mesenchymal transition, which could be rescued by treatment with a miR‐6165 inhibitor. Mechanistically, we revealed that circ_0001459 could sponge miR‐6165 and induce the upregulation of its downstream target IGF1R, thus significantly promoting the progression of HCC. Therefore, circ_0001459 could be a new potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Duo Shen
- Medical School, Southeast University, Nanjing, China
| | - Hongyu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Zeng
- Medical School, Southeast University, Nanjing, China
| | - Meiling Ge
- Department of Clinical Research Center, Drum Tower Hospital of Nanjing, Nanjing, China
| | | | - Wei Zhao
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|