1
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
2
|
Putralis R, Korotkaja K, Kaukulis M, Rudevica Z, Jansons J, Nilova O, Rucins M, Krasnova L, Domracheva I, Plotniece M, Pajuste K, Sobolev A, Rumnieks F, Bekere L, Zajakina A, Plotniece A, Duburs G. Styrylpyridinium Derivatives for Fluorescent Cell Imaging. Pharmaceuticals (Basel) 2023; 16:1245. [PMID: 37765053 PMCID: PMC10535741 DOI: 10.3390/ph16091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A set of styrylpyridinium (SP) compounds was synthesised in order to study their spectroscopic and cell labelling properties. The compounds comprised different electron donating parts (julolidine, p-dimethylaminophenyl, p-methoxyphenyl, 3,4,5-trimethoxyphenyl), conjugated linkers (vinyl, divinyl), and an electron-withdrawing N-alkylpyridinium part. Geminal or bis-compounds incorporating two styrylpyridinium (bis-SP) moieties at the 1,3-trimethylene unit were synthesised. Compounds comprising a divinyl linker and powerful electron-donating julolidine donor parts possessed intensive fluorescence in the near-infrared region (maximum at ~760 nm). The compounds had rather high cytotoxicity towards the cancerous cell lines HT-1080 and MH-22A; at the same time, basal cytotoxicity towards the NIH3T3 fibroblast cell line ranged from toxic to harmful. SP compound 6e had IC50 values of 1.0 ± 0.03 µg/mL to the cell line HT-1080 and 0.4 µg/mL to MH-22A; however, the basal toxicity LD50 was 477 mg/kg (harmful). The compounds showed large Stokes' shifts, including 195 nm for 6a,b, 240 nm for 6e, and 325 and 352 nm for 6d and 6c, respectively. The highest photoluminescence quantum yield (PLQY) values were observed for 6a,b, which were 15.1 and 12.2%, respectively. The PLQY values for the SP derivatives 6d,e (those with a julolidinyl moiety) were 0.5 and 0.7%, respectively. Cell staining with compound 6e revealed a strong fluorescent signal localised in the cell cytoplasm, whereas the cell nuclei were not stained. SP compound 6e possessed self-assembling properties and formed liposomes with an average diameter of 118 nm. The obtained novel data on near-infrared fluorescent probes could be useful for the development of biocompatible dyes for biomedical applications.
Collapse
Affiliation(s)
- Reinis Putralis
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
| | - Ksenija Korotkaja
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Martins Kaukulis
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Olga Nilova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Laura Krasnova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Mara Plotniece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Laura Bekere
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| |
Collapse
|
3
|
Cisneros D, Cueto-Díaz EJ, Medina-Gil T, Chevillard R, Bernal-Fraile T, López-Sastre R, Aldfer MM, Ungogo MA, Elati HAA, Arai N, Otani M, Matsushiro S, Kojima C, Ebiloma GU, Shiba T, de Koning HP, Dardonville C. Imidazoline- and Benzamidine-Based Trypanosome Alternative Oxidase Inhibitors: Synthesis and Structure-Activity Relationship Studies. ACS Med Chem Lett 2022; 13:312-318. [PMID: 35178188 PMCID: PMC8842630 DOI: 10.1021/acsmedchemlett.1c00717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 01/03/2023] Open
Abstract
![]()
The trypanosome alternative
oxidase (TAO), a mitochondrial enzyme
involved in the respiration of the bloodstream form trypomastigotes
of Trypanosoma brucei, is a validated
drug target against African trypanosomes. Earlier series of TAO inhibitors
having a 2,4-dihydroxy-6-methylbenzoic acid scaffold (“head”)
and a triphenylphosphonium or quinolin-1-ium cation as a mitochondrion-targeting
group (“tail”) were shown to be nanomolar inhibitors
in enzymatic and cellular assays. We investigated here the effect
of different mitochondrion-targeting cations and other scaffold modifications
on the in vitro activity of this class of inhibitors. Low micromolar
range activities were obtained, and the structure–activity
relationship studies showed that modulation of the tail region with
polar substituents is generally detrimental to the enzymatic and cellular
activity of TAO inhibitors.
Collapse
Affiliation(s)
- David Cisneros
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - Tania Medina-Gil
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Rebecca Chevillard
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Teresa Bernal-Fraile
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ramón López-Sastre
- Instituto de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Mustafa M. Aldfer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Marzuq A. Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Hamza A. A. Elati
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Natsumi Arai
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Momoka Otani
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shun Matsushiro
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Chiaki Kojima
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Godwin U. Ebiloma
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | |
Collapse
|