1
|
Pal R, Teli G, Sengupta S, Maji L, Purawarga Matada GS. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC). J Biomol Struct Dyn 2024; 42:9795-9811. [PMID: 37642992 DOI: 10.1080/07391102.2023.2252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Almost 80% of lung cancer diagnoses each year correspond to non-small cell lung cancer (NSCLC). The percentage of NSCLC with EGFR overexpression ranges from 40% to 89%, with squamous tumors showing the greatest rates (89%) and adenocarcinomas showing the lowest rates (41%). Therefore, in NSCLC therapy, blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR has exhibited significant improvement. In this view, several small molecules particularly pyrimidine/fused pyrimidine scaffolds were intended for molecular hybridization to develop EGFR-TK inhibitors. However, the associated limitation such as resistance and genetic mutation along with adverse effects, constrained the long-term treatment and effectiveness of such medication. Therefore, in recent years, pyrimidine derivatives were uncovered as potential EGFR TKIs. The present review summarised the research progress of EGFR TKIs to dazed structure-activity relationship, biological evaluation, and comparative docking studies of pyrimidine compounds. We have added the comparative docking analysis followed by the molecular simulation study against the four different PDBs of EGFR to strengthen the already existing research. Docking analysis unfolded that compound 14 resulted as noticeable with all different PDB and managed to interact with some of the crucial amino acid residues. From a future perspective, researchers must develop a more selective inhibitor, that can selectively target the mutation. Our review will support medicinal chemists in the direction of the development of novel pyrimidine-based EGFR TKIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Sai Madhurya M, Thakur V, Dastari S, Shankaraiah N. Pyrrolo[2,3-d]pyrimidines as potential kinase inhibitors in cancer drug discovery: A critical review. Bioorg Chem 2024; 153:107867. [PMID: 39388837 DOI: 10.1016/j.bioorg.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Pyrrolo[2,3-d]pyrimidine-based kinase inhibitors have emerged as an important class of targeted therapeutics to combat various types of cancer. The distinctive structural feature of pyrrolopyrimidine ring system offers an adaptable platform for designing potent inhibitors of various kinases, crucial in regulating cellular processes. The deazapurine framework inherent to pyrrolopyrimidines bears a conspicuous resemblance to adenine, the natural ligand ATP. The structural mimicry enhances their appeal as potent inhibitors of key kinases. This review reconnoitres the intricate process of designing and developing pyrrolopyrimidine based derivatives, accentuating their structural diversity and the strategic modifications employed to enhance selectivity, potency, and pharmacokinetic properties. The discussion delves into medicinal chemistry strategies, highlighting successful examples that have been progressed to clinical evaluation. Furthermore, the review highlights the promise of pyrrolopyrimidine scaffolds in revolutionizing targeted cancer therapy and provides a pioneering perspective on future directions.
Collapse
Affiliation(s)
- Malyala Sai Madhurya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Vanashree Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sowmya Dastari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
3
|
Xu X, Han W, Ning X, Zang C, Xu C, Zeng C, Pu C, Zhang Y, Chen Y, Liu H. Constructing Innovative Covalent and Noncovalent Compound Libraries: Insights from 3D Protein-Ligand Interactions. J Chem Inf Model 2024; 64:1543-1559. [PMID: 38381562 DOI: 10.1021/acs.jcim.3c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Noncovalent interactions between small-molecule drugs and protein targets assume a pivotal role in drug design. Moreover, the design of covalent inhibitors, forming covalent bonds with amino acid residues, requires rational reactivity for their covalent warheads, presenting a key challenge as well. Understanding the intricacies of these interactions provides a more comprehensive understanding of molecular binding mechanisms, thereby guiding the rational design of potent inhibitors. In this study, we adopted the fragment-based drug design approach, introducing a novel methodology to extract noncovalent and covalent fragments according to distinct three-dimensional (3D) interaction modes from noncovalent and covalent compound libraries. Additionally, we systematically replaced existing ligands with rational fragment substitutions, based on the spatial orientation of fragments in 3D space. Furthermore, we adopted a molecular generation approach to create innovative covalent inhibitors. This process resulted in the recombination of a noncovalent compound library and several covalent compound libraries, constructed by two commonly encountered covalent amino acids: cysteine and serine. We utilized noncovalent ligands in KLIFS and covalent ligands in CovBinderInPDB as examples to recombine noncovalent and covalent libraries. These recombined compound libraries cover a substantial portion of the chemical space present in the original compound libraries and exhibit superior performance in terms of molecular scaffold diversity compared to the original compound libraries and other 11 commercial libraries. We also recombined BTK-focused libraries, and 23 compounds within our libraries have been validated by former researchers to possess potential biological activity. The establishment of these compound libraries provides valuable resources for virtual screening of covalent and noncovalent drugs targeting similar molecular targets.
Collapse
Affiliation(s)
- Xiaohe Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Weijie Han
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiangzhen Ning
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chengdong Zang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chengcheng Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zeng
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chengtao Pu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
4
|
Dhiwar PS, Purawarga Matada GS, Pal R, Singh E, Ghara A, Maji L, Sengupta S, Andhale G. An assessment of EGFR and HER2 inhibitors with structure activity relationship of fused pyrimidine derivatives for breast cancer: a brief review. J Biomol Struct Dyn 2024; 42:1564-1581. [PMID: 37158086 DOI: 10.1080/07391102.2023.2204351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) and its subtype human epidermal growth factor receptor 2 (HER2) gets activated when its endogenous ligand(s) bind to its ATP binding site of target receptors. In breast cancer (BC), EGFR and HER2 are two proteins are overexpressed which leads to overexpression of cells proliferation and decreases cell death/apoptosis. Pyrimidine is one of the most widely studied heterocyclic scaffolds for EGFR as well as HER2 inhibition. We gather some remarkable results for fused-pyrimidine derivatives on various cancerous cell lines (in-vitro) and animal (in-vivo) evaluation to highlight their potency. The heterocyclic (five, six-membered, etc.) moieties which are coupled with pyrimidine moiety are potent against EGFR and HER2 inhibitions. Hence structure-activity relationship (SAR) plays important role in study of heterocyclic moiety along pyrimidine and effects of substituents, groups for increase or decrease in the cancerous activity and toxicity. By thoughtful of fused pyrimidines SAR study, it facilitates in receiving excellent overview of the compounds by concerning of efficacy and potential summary for future EGFR inhibitors. Furthermore, we studied the in-silico interactions of synthesized compounds to evaluate binding affinity towards the key amino acids..Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasad Sanjay Dhiwar
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | | | - Rohit Pal
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Lalmohan Maji
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Sindhuja Sengupta
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ganesh Andhale
- Department of Pharmaceutical Chemistry, Alard College of Pharmacy, Pune, India
| |
Collapse
|
5
|
Cheke RS, Kharkar PS. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Dev Res 2024; 85:e22132. [PMID: 38054744 DOI: 10.1002/ddr.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Covalent inhibitors have been used to treat several diseases for over a century. However, strategic approaches for the rational design of covalent drugs have taken a definitive shape in recent times. Since the first appearance of covalent inhibitors in the late 18th century, the field has grown tremendously and around 30% of marketed drugs are covalent inhibitors especially, for oncology indications. However, the off-target toxicity and safety concerns can be significant issues related to the covalent drugs. Covalent kinase inhibitor (CKI) targeted oncotherapeutics has advanced dramatically over the last two decades since the discovery of afatinib (Gilotrif®), an EGFR inhibitor. Since then, US FDA has approved 10 CKIs for diverse cancer targets. The present review broadly summarizes the ongoing development in the discovery of newer CKIs from 2016 till the end of 2022. We believe that these efforts will assist the modern medicinal chemist actively working in the field of CKI discovery for varied indications.
Collapse
Affiliation(s)
- Rameshwar S Cheke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Chang H, Zhang Z, Tian J, Bai T, Xiao Z, Wang D, Qiao R, Li C. Machine Learning-Based Virtual Screening and Identification of the Fourth-Generation EGFR Inhibitors. ACS OMEGA 2024; 9:2314-2324. [PMID: 38250375 PMCID: PMC10795152 DOI: 10.1021/acsomega.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal regulatory role in treating patients with advanced nonsmall cell lung cancer (NSCLC). Following the emergence of the EGFR tertiary CIS C797S mutation, all types of inhibitors lose their inhibitory activity, necessitating the urgent development of new inhibitors. Computer systems employ machine learning methods to process substantial volumes of data and construct models that enable more accurate predictions of the outcomes of new inputs. The purpose of this article is to uncover innovative fourth-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with the aid of machine learning techniques. The paper's data set was high-dimensional and sparse, encompassing both structured and unstructured descriptors. To address this considerable challenge, we introduced a fusion framework to select critical molecule descriptors by integrating the full quadratic effect model and the Lasso model. Based on structural descriptors obtained from the full quadratic effect model, we conceived and synthesized a variety of small-molecule inhibitors. These inhibitors demonstrated potent inhibitory effects on the two mutated kinases L858R/T790M/C797S and Del19/T790M/C797S. Moreover, we applied our model to virtual screening, successfully identifying four hit compounds. We have evaluated these hit ADME characteristics and look forward to conducting activity evaluations on them in the future to discover a new generation of EGFR-TKI.
Collapse
Affiliation(s)
- Hao Chang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyu Zhang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Jiaxin Tian
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tian Bai
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Zijie Xiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dianpeng Wang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Renzhong Qiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Makhija R, Sharma A, Dubey R, Asati V. Structural Perspectives in the Development of Novel EGFR Inhibitors for the Treatment of NSCLC. Mini Rev Med Chem 2024; 24:1746-1783. [PMID: 38584547 DOI: 10.2174/0113895575296174240323172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell Lung cancer (NSCLC) is the most common type of lung cancer, which is caused by high consumption of tobacco and smoking. It is an epithelial lung cancer that affects about 2.2 million people across the globe, according to International Agency for Research on Cancer (IARC). Non-small cell lung cancer is a malignant tumor caused by EGFR mutation that occurs in the in-frame deletion of exon 19 and L858R point mutation in exon 21. Presently, clinically available inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific and responsible for undesirable adverse effects. Moreover, to solve this problem search for newer EGFR inhibitors is the utmost need for the treatment and/or management of increasing lung cancer burden. The discovery of therapeutic agents that inhibit the specific target in tumorous cells, such as EGFR, is one of the successful strategies in treating many cancer therapies, including lung cancer. The exhaustive literature survey (2018-2023) has shown the importance of medicinally privileged pyrimidine derivatives together, fused and/or clubbed with other heterocyclic rings to design and develop novel EGFR inhibitors. Pyrimidine derivatives substituted with phenylamine, indole, pyrrole, piperazine, pyrazole, thiophene, pyridine and quinazoline derivatives substituted with phenylamine, pyrimidine, morpholine, pyrrole, dioxane, acrylamide, indole, pyridine, furan, pyrimidine, pyrazole etc. are privileged heterocyclic rings shown promising activity by inhibiting EGFR and TKIs. The present review summarizes the structure-activity relationship (SAR) and enzyme inhibitory activity, including IC50 values, percentage inhibition, and kinetic studies of potential compounds from various literature. The review also includes various aspects of molecular docking studies with compounds under clinical trials and patents filed on pyrimidine-based EGFR inhibitors in treating non-small cell lung cancer. The present review may benefit the medicinal chemist for developing novel compounds such as EGFR inhibitors.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
8
|
Metwally K, Abo-Dya NE. Pyrrolo[2,3-D]Pyrimidines as EGFR and VEGFR Kinase Inhibitors: A Comprehensive SAR Review. Curr Med Chem 2024; 31:5918-5936. [PMID: 37581522 DOI: 10.2174/0929867331666230815115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Tyrosine kinases are implicated in a wide array of cellular physiological processes, including cell signaling. The discovery of the BCR-ABL tyrosine kinase inhibitor imatinib and its FDA approval in 2001 paved the way for the development of small molecule chemical entities of diverse structural backgrounds as tyrosine kinase inhibitors for the treatment of various ailments. Two of the most prominent tyrosine kinases as drug targets are the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), as evidenced by the clinical success of their many inhibitors in the drug market. Among several other physiological roles, EGFR regulates epithelial tissue development and homeostasis, while VEGFR regulates tumor-induced angiogenesis. The pyrrolo[2,3-d]pyrimidine nucleus represents a deaza-isostere of adenine, the nitrogenous base of ATP. The recent introduction of many pyrrolo[2,3-d]pyrimidines to the drug market as tyrosine kinase inhibitors makes them a hot topic in the medicinal chemistry research area at the present time. This review article comprehensively sheds light on the structure-activity relationship (SAR) of pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR tyrosine kinase inhibitors, aiming to provide help medicinal chemists in the design of future pyrrolopyrimidine kinase inhibitors.
Collapse
Affiliation(s)
- Kamel Metwally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk 71491, Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Elsebaie HA, El-Bastawissy EA, Elberembally KM, Khaleel EF, Badi RM, Shaldam MA, Eldehna WM, Tawfik HO, El-Moselhy TF. Novel 4-(2-arylidenehydrazineyl)thienopyrimidine derivatives as anticancer EGFR inhibitors: Design, synthesis, biological evaluation, kinome selectivity and in silico insights. Bioorg Chem 2023; 140:106799. [PMID: 37625210 DOI: 10.1016/j.bioorg.2023.106799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
The current study discovered fifteen new thieno[2,3-d]pyrimidine derivatives with potential anticancer action, including 5a-l, 6, and 7a-b. Results from the NCI screening revealed that compounds 5f-i and 7a significantly inhibited the proliferation of MDA-MB-468 cells at mean GI% and GI50 levels. Compared to staurosporine, these compounds (5f-i and 7a) demonstrated better safety towards typical WI-38 cells. Compounds 5g and 7a demonstrated the highest inhibition (two-digit nanomolar) when compared to erlotinib when their potency was tested on EGFR kinase. Considering the outcomes above, 5g was examined for its ability to disrupt the cell cycle with trigger apoptosis in breast cancer MDA-MB-468 cell lines. The apoptosis markers Bax, Bcl-2, Caspase-8, and Caspase-9, were detected. In silico molecular docking and dynamic simulation were used to explainthe biological activities of the most potent compound.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Eman A El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Kamel M Elberembally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia.
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City 11829, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527 Egypt.
| |
Collapse
|
10
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
11
|
Simon K, Znidar D, Boutet J, Guillamot G, Lenoir JY, Dallinger D, Kappe CO. Generation of 1,2-Difluorobenzene via a Photochemical Fluorodediazoniation Step in a Continuous Flow Mode. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kevin Simon
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - Desiree Znidar
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - Julien Boutet
- Seqens SAS, 21 Chemin de la Sauvegarde, 21 Ecully Parc, Ecully 69130, France
| | - Gérard Guillamot
- Seqens SAS, 21 Chemin de la Sauvegarde, 21 Ecully Parc, Ecully 69130, France
| | - Jean-Yves Lenoir
- Seqens SAS, 21 Chemin de la Sauvegarde, 21 Ecully Parc, Ecully 69130, France
| | - Doris Dallinger
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| |
Collapse
|
12
|
Lan H, Song J, Yuan J, Xing A, Zeng D, Hao Y, Zhang Z, Feng S. Synthesis, Biological Evaluation, DNA Binding, and Molecular Docking of Hybrid 4,6-Dihydrazone Pyrimidine Derivatives as Antitumor Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010187. [PMID: 36615380 PMCID: PMC9822369 DOI: 10.3390/molecules28010187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
In the present paper, on the basis of molecular hybridization, a series of 4,6-dihydrazone pyrimidine derivatives containing the pyridine moiety were synthesized, structurally characterized, and evaluated in vitro for their antitumor activity. According to the results, all the tested compounds demonstrated broad-spectrum antitumor activity against selected tumor cell lines (MCF-7, BGC-823, A549, and BEL-7402) and no obvious toxicity toward normal cells HL-7702. In particular, compounds 10a and 10f were found to be the most promising antitumor agents among the tested compounds against BGC-823 cells (IC50 = 9.00 μM and 7.89 μM) and BEL-7402 cells (IC50 = 6.70 μM and 7.66 μM), respectively. Compounds 10a and 10f exhibited higher potency against BGC-823 and BEL-7402 than the positive control 5-FU (IC50 = 15.18 μM and 15.81 μM). Further mechanism investigations demonstrated that compounds 10a and 10f could significantly increase the level of cellular ROS and induce early apoptosis of BGC-823 cells in a dose-dependent manner. Moreover, the DNA binding results from UV/Vis, CD spectroscopy, and molecular docking studies indicated that 10a and 10f bind with DNA via groove binding and partial intercalation. These results demonstrated that 10a and 10f may serve as novel lead compounds for the discovery of more dihydrazone pyrimidine derivatives with improved antitumor potency and selectivity.
Collapse
Affiliation(s)
- Hairong Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junying Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (J.Y.); (Z.Z.)
| | - Aiping Xing
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yating Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (J.Y.); (Z.Z.)
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
13
|
Synthesis, biological evaluation and molecular docking studies of novel pyrrolo[2,3-d]pyrimidin-2-amine derivatives as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Zhao HY, Xi XX, Xin M, Zhang SQ. Overcoming C797S Mutation: The Challenges and Prospects of the Fourth-Generation EGFR-TKIs. Bioorg Chem 2022; 128:106057. [DOI: 10.1016/j.bioorg.2022.106057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
|