1
|
He XF, Li TZ, Ma YB, Wang MF, Chen JJ. Unusual cadinane-involved sesquiterpenoid dimers from Artemisia annua and their antihepatoma effect. PHYTOCHEMISTRY 2024; 226:114216. [PMID: 38972444 DOI: 10.1016/j.phytochem.2024.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Artemisia annua L. ("Qinghao" in Chinese) is a famous traditional Chinese medicinal herb and has been used to treat malaria and various tumors. Our preliminary screening indicated that the EtOAc extract of A. annua manifested activity against HepG2, Huh7, and SK-Hep-1 cell lines with inhibitory ratios of 53.2%, 52.1%, and 59.6% at 200 μg/mL, respectively. Bioassay-guided isolation of A. annua afforded 14 unusual cadinane-involved sesquiterpenoid dimers, artemannuins A‒N (1-14), of which the structures were elucidated by extensive spectral analyses, ECD calculations, and single-crystal X-ray diffraction. Structurally, these compounds were classified into five different types based on the coupled modes of two monomeric sesquiterpenoids. Among them, compounds 1-9 represented the first examples of sesquiterpenoid dimers formed via the C-3‒C-3' single bond of two 5(4 → 3)-abeo-cadinane sesquiterpenoid monomers, while compounds 13 and 14 were dimers fused by cadinane and humulane sesquiterpenoids via an ester bond. Methylated derivatives of 1, 4, 6, and 8 showed antihepatoma activity against HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values ranging from 30.5 to 57.2 μM.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Meng-Fei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Shen Y, Liu F, Zhang M. Therapeutic potential of plant-derived natural compounds in Alzheimer's disease: Targeting microglia-mediated neuroinflammation. Biomed Pharmacother 2024; 178:117235. [PMID: 39094545 DOI: 10.1016/j.biopha.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with roles in sensing, housekeeping, and defense. Exploring the role of microglia in the occurrence and development of Alzheimer's disease (AD) and the possible therapeutic mechanism of plant-derived natural compounds (PDNCs) that regulate microglia-associated neuroinflammation may potentially help in elucidating the pathogenesis of AD and provide novel insights for its treatment. This review explores the role of abnormal microglial activation and its dominant neuroinflammatory response, as well as the activation of their target receptors and signaling pathways in AD pathogenesis. Additionally, we report an update on the potential pharmacological mechanisms of multiple PDNCs in modulating microglia-associated neuroinflammation in AD treatment. Dysregulated activation of microglial receptors and their downstream pathways impaired immune homeostasis in animal models of AD. Multiple signaling pathways, such as mitogen-activated protein kinase (MAPK), nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and Toll-like receptors, play important roles in microglial activation and can exacerbate microglia-mediated neuroinflammation. PDNCs, such as magnolol, stigmasterol, matrine, naringenin, naringin, and resveratrol, can delay the progression of AD by inhibiting the proinflammatory receptors of microglia, activating its anti-inflammatory receptors, regulating the receptors related to β-amyloid (Aβ) clearance, reversing immune dysregulation, and maintaining the immune homeostasis of microglial downstream pathways. This review summarizes the mechanisms by which microglia cause chronic inflammation in AD and evaluates the beneficial effects of PDNCs on immune regulation in AD by regulating microglial receptors and their downstream pathways.
Collapse
Affiliation(s)
- Yanyan Shen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, China
| | - Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
3
|
Ha W, Ma R, Kang JY, Iradukunda Y, Shi YP. Green and shape-tunable synthesis of ellagic acid crystalline particles by tannic acid for neuroprotection against oxidative stress. Biomater Sci 2024; 12:3610-3621. [PMID: 38842122 DOI: 10.1039/d4bm00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Oxidative stress (OS) plays an important role in the emergence and prevention of neurodegenerative diseases, such as Alzheimer's disease (AD). Excess reactive oxygen species (ROS) accumulated in a neuronal cell can lead to OS, producing cell injury and death. Seeking nanoantioxidants against AD-related oxidative stress has attracted a lot of attention, especially those potential antioxidant agents derived from natural polyphenols. However, the transformation of abundant plant polyphenols to antioxidative biomaterials against OS is still challenging. In this work, we report a new method to transform amorphous tannic acid (TA) into tailorable shaped ellagic acid (EA) crystalline particles without using an organic solvent. EA crystalline particles were generated from TA, which underwent a chemical transformation, in situ metal phenolic coordination and acid-induced assembly process, and the size and shape could be controlled by varying the amount of acid. As-prepared EA crystalline particles showed excellent stability in water and lysosomal mimicking fluid and possess unique fluorescence properties and a strong response in mass spectrometry, which is beneficial for their imaging analysis in cells and tissues. More importantly, EA particles have shown significant H2O2-related ROS scavenging ability, a high cellular uptake capacity, an excellent neuroprotective effect in PC12 cells, a high drug loading capacity and BBB permeability to enter the brain. Our study suggested that the EA crystalline particles show great potential for OS-mediated AD treatment.
Collapse
Affiliation(s)
- Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
4
|
Ma R, Feng XY, Tang JJ, Ha W, Shi YP. 5α-Epoxyalantolactone from Inula macrophylla attenuates cognitive deficits in scopolamine-induced Alzheimer's disease mice model. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:39. [PMID: 38954263 PMCID: PMC11219692 DOI: 10.1007/s13659-024-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition. 5α-epoxyalantolactone (5α-EAL), a eudesmane-type sesquiterpene isolated from the herb of Inula macrophylla, has various pharmacological effects. This work supposed to investigate the improved impact of 5α-EAL on cognitive impairment. 5α-EAL inhibited the generation of nitric oxide (NO) in BV-2 cells stimulated with lipopolysaccharide (LPS) with an EC50 of 6.2 μM. 5α-EAL significantly reduced the production of prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α), while also inhibiting the production of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins. The ability of 5α-EAL to penetrate the blood-brain barrier (BBB) was confirmed via a parallel artificial membrane permeation assay. Scopolamine (SCOP)-induced AD mice model was employed to assess the improved impacts of 5α-EAL on cognitive impairment in vivo. After the mice were pretreated with 5α-EAL (10 and 30 mg/kg per day, i.p.) for 21 days, the behavioral experiments indicated that the administration of the 5α-EAL could alleviate the cognitive and memory impairments. 5α-EAL significantly reduced the AChE activity in the brain of SCOP-induced AD mice. In summary, these findings highlight the beneficial effects of the natural product 5α-EAL as a potential bioactive compound for attenuating cognitive deficits in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Xia J, Dong S, Yang L, Wang F, Xing S, Du J, Li Z. Design, synthesis, and biological evaluation of novel tryptanthrin derivatives as selective acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:106980. [PMID: 38006789 DOI: 10.1016/j.bioorg.2023.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Two novel series of tryptanthrin (TRYP) derivatives were designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD). Inhibition assay against cholinesterase (ChE) indicated that these derivatives can act as acetylcholinesterase (AChE) inhibitors with selectivity over butyrylcholinesterase (BuChE). Among them, n1 exhibited the most excellent ChE inhibitory potency (AChE, IC50 = 12.17 ± 1.50 nM; BuChE, IC50 = 6.29 ± 0.48 μΜ; selectivity index = 517). Molecular docking studies indicated that compound n1 can interact with amino acid residues in the catalytic active site and peripheral anionic site of AChE and the molecular dynamics (MD) simulation studies demonstrated that the AChE-n1 complex had good stability. N1 also exhibited anti-amyloid-β (Aβ) aggregation (63.48 % ± 1.02 %, 100 μΜ) and anti-neuroinflammation activity (NO, IL-1β, TNF-α; IC50 = 2.13 ± 0.54 μΜ, 2.21 ± 0.37 μΜ, 2.47 ± 0.07 μΜ, respectively), and n1 had neuroprotective and metal-chelating properties. Further studies indicated n1 had proper blood-brain barrier permeability in the Parallel artificial membrane permeation assay. In vivo studies found that n1 effectively improved learning and memory impairment in scopolamine-induced AD mouse models. Nissl staining ofmice hippocampaltissue sections revealed that n1 restored neuronal cells in the hippocampus CA3 and CA1 regions. These findings suggested that n1 can be a promising compound for further development of multifunctional agents for AD treatment.
Collapse
Affiliation(s)
- Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Lili Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
6
|
Li J, Guo X, Luo Z, Wu D, Shi X, Xu L, Zhang Q, Xie C, Yang C. Chemical constituents from the flowers of Inula japonica and their anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117052. [PMID: 37597674 DOI: 10.1016/j.jep.2023.117052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowers of Inula japonica (Inulae Flos) can be used to treat cough and asthma and remove phlegm in traditional Chinese medicine (TCM). AIM OF THE STUDY Our research aimed to obtain active components with the inhibition of inflammation and MUC5AC production to alleviate asthma symptoms from I. japonica. MATERIALS AND METHODS These compounds were separated from the MeOH extract of Inulae Flos by column chromatography over silica gel, AB-8 macroporous resin column, MPLC, and semipreparative HPLC. Their structures were elucidated by detailed spectroscopic data analysis, ECD calculations, and chemical methods. NO production was determined to evaluate anti-inflammatory activity in RAW 264.7 cells. The expression of MUC5AC, IL-1β, and IL-4 were measured in NCI-H292 cells by qRT-PCR. The anti-asthma activity assessments in vivo were performed through H & E and PAS staining, pulmonary function analysis, and cytokines determination by qRT-PCR or ELISA. The expression levels of PI3K, p-PI3K, AKT, p-AKT, MEK, p-MKE, ERK, p-MEK, and IL-1β were analyzed through western blotting. RESULTS One undescribed 1,10-seco-eudesmanolide derivative (1), two previously unreported 1,10-seco-eudesmanolide glycosides (2 and 3), and thirty-two known compounds (4-35) were obtained from Inulae Flos. Compound 11 had the most inhibitory effect against LPS-induced NO production in RAW 264.7 murine macrophages. Meanwhile, compound 11 also attenuated the increase in MUC5AC, IL-1β, and IL-4 mRNA expression in NCI-H292 cells. The results of the animal experiment confirmed that compound 11 significantly ameliorated OVA-induced asthma in a murine model of allergic asthma demonstrated by elevated pulmonary function, reduced inflammatory cell infiltration and mucus production. In addition, compound 11 significantly inhibited the levels of OVA-specific IgE in serum, of IL-4 and IL-6 in BALF, and of MUC5AC, IL-1β , IL-4, IL-5, IL-6 and IL-13 in lung tissue. Finally, compound 11 suppressed PI3K/AKT/MEK/ERK signaling pathway in lung tissue of mice. CONCLUSION This study indicated that compound 11 might be a potential therapeutic candidate ameliorating airway inflammation and mucus hypersecretion via PI3K/AKT/MEK/ERK signaling pathway in allergic asthma.
Collapse
Affiliation(s)
- Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Xiaowei Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zhilin Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Lixin Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
7
|
Zhang T, Xing S, Du J, Xia J, Dong S, Li Z, Liu Z, Song Y. Discovery of novel TLR4/MD-2 inhibitors: Receptor structure-based virtual screening studies and anti-inflammatory evaluation. Bioorg Chem 2023; 141:106880. [PMID: 37783098 DOI: 10.1016/j.bioorg.2023.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
In this study, a receptor structure-based virtual screening strategy was constructed using a computer-aided drug design. First, the compounds were filtered based on the Lipinski pentad and adsorption, distribution, metabolism, excretion, and toxicity profiles. Then, receptor structure-based pharmacophore models were constructed and screened. Finally, the in vitro toxicity and anti-inflammatory activities of hit compounds were initially evaluated to investigate their in vitro anti-inflammatory effects and mechanisms of action. The results revealed that hit 94 had the best anti-inflammatory activity and low toxicity while inhibiting the activation of Toll-like receptor (TLR) 4/myeloid differentiation factor 2 (MD2)-associated signaling pathways of nuclear factor-κB and mitogen-activated protein kinase. In vivo adjuvant arthritis results also revealed that hit 94 ameliorated foot swelling to a greater extent in rats compared with the positive control drug indomethacin. These results suggest that hit 94 can be used as a potential TLR/MD2 inhibitor for inflammatory diseases.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China; The Affiliated Suqian First People's Hospital of Nanjing Medical University, SuQian 223800, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China.
| | - Zhicheng Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China.
| | - Yang Song
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230000, China; Department of Pain, The First Affiliated Hospital of Anhui Medical University, Anhui Medical Uiversity, Hefei 230032, China.
| |
Collapse
|
8
|
Cao Z, Wang X, Zhang T, Fu X, Zhang F, Zhu J. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson's disease. J Enzyme Inhib Med Chem 2023; 38:2159957. [PMID: 36728713 PMCID: PMC9897792 DOI: 10.1080/14756366.2022.2159957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives was designed, synthesized and evaluated. The results revealed that representative compound 3h possessed potent and selective MAO-B inhibitory activity (IC50 = 0.062 µM), and its inhibitory mode was competitive and reversible. Additionally, 3h also displayed excellent anti-oxidative effect (ORAC = 2.27 Trolox equivalent), significant metal chelating ability and appropriate BBB permeability. Moreover, 3h exhibited good neuroprotective effect and anti-neuroinflammtory ability. These results indicated that compound 3h was a promising candidate for further development against PD.
Collapse
Affiliation(s)
- Zhongcheng Cao
- School of Pharmacy, North Sichuan Medical College, Nanchong, China,CONTACT Zhongcheng Cao School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Xingyue Wang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Tianlong Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xianwu Fu
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Fan Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, China,Jiang Zhu Sichuan Key Laboratory of Medical Imaging, School of Pharmacy and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, 637000, China
| |
Collapse
|
9
|
Li X, Hu Y, He B, Li L, Tian Y, Xiao Y, Shang H, Zou Z. Design, synthesis and evaluation of ursodeoxycholic acid-cinnamic acid hybrids as potential anti-inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways. Eur J Med Chem 2023; 260:115785. [PMID: 37678142 DOI: 10.1016/j.ejmech.2023.115785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
A series of ursodeoxycholic acid (UDCA)-cinnamic acid hybrids were designed and synthesized. The anti-inflammatory activity of these derivatives was screened through evaluating their inhibitory effects of LPS-induced nitric oxide production in RAW264.7 macrophages. The preliminary structure-activity relationship was concluded. Among them, 2m showed the best inhibitory activity against NO (IC50 = 7.70 μM) with no significant toxicity. Further study revealed that 2m significantly decreased the levels of TNF-α, IL-1β, IL-6 and PGE2, down-regulated the expression of iNOS and COX-2. Preliminary mechanism study indicated that the anti-inflammatory activity of 2m was related to the inhibition of the Akt/NF-κB and MAPK signaling pathway. Furthermore, 2m reduced inflammation by a mouse model of LPS-induced inflammatory disease in vivo. In brief, our findings indicated that 2m might serve as a new lead compound for further development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaoxue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yue Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bingxin He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yingjie Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
10
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
11
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
12
|
Dan W, Cao Y, Sun Y, Zhang J, Liu J, Gao J, Han R, Dai J. Novel N 1 or N 9 modified α-carboline analogues as potential ligands in Alzheimer's disease therapy: Synthesis and neurobiological activity evaluation. Bioorg Chem 2023; 133:106378. [PMID: 36736035 DOI: 10.1016/j.bioorg.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
A series of new α-carboline analogues modified at N1 or N9 positions by alkyl, benzyl and phenyl were synthesized and characterized as potential ligands for AD therapy. These compounds exhibited multifunctional neurobiological activities including anti-neuroinflammatory, neuroprotective and cholinesterase inhibition. Among them, compound 5d with good drug-like properties and no cytotoxicity, showed potent inhibitory activity against NO production (IC50 = 1.45 μM), which could suppress the expression levels of iNOS and COX-2 in a dose-dependent manner. Further mechanism exploration indicated that compound 5d could regulate the NF-κB signaling pathway by decreasing the phosphorylation of IκB-α and p65. Notably, compound 5d could effectively decrease the LPS-induced aberrations in zebrafish. Compounds 3b, 4f, 5c, 5g, 5m and 6i exhibited potential neuroprotective activity (cell viability > 70 %) in the H2O2-induced PC-12 neuronal death model and rescued the SOD activity. In particular, compounds 3b, 4f, and 5g activated the Nrf2 signaling pathway, and improved the expressions of antioxidant proteins NQO-1 and HO-1, which alleviated the head cell apoptosis in zebrafish. Additionally, compound 6i exhibited potential inhibitory activity against BuChE with IC50 of 0.77 μM. Overall, this work provided some lead compounds based on α-carboline used for AD therapy.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Yidan Cao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Yifan Sun
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jiaoyue Zhang
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jinyi Liu
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Rui Han
- Institute of Basic and Transitional Medicine, Xi'an Medical University, Shannxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
13
|
Discovery of novel 2-hydroxyl-4-benzyloxybenzyl aniline derivatives as potential multifunctional agents for the treatment of Parkinson's disease. Eur J Med Chem 2023; 249:115142. [PMID: 36716641 DOI: 10.1016/j.ejmech.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
To discover novel multifunctional agents for the treatment of Parkinson's disease, a series of 2-hydroxyl-4-benzyloxybenzyl aniline derivatives was designed, synthesized and evaluated. The biological screening indicated that representative compound 6h possessed excellent MAO-B inhibition (IC50 = 0.014 μM), high antioxidant activity (ORAC = 2.14 Trolox equivalent), good metal chelating ability, appropriate BBB permeability and significant neuroprotective effect. Additionally, 6h exhibited great ability to alleviate the neuroinflammtion by suppressing the activation of NF-κB pathway in vitro. Furthermore, 6h can also ameliorate MPTP induced Parkinson's disease symptoms in mice by improving the dopamine level and repressing oxidative damage. These results indicated that compound 6h was a promising candidate for further development against PD.
Collapse
|
14
|
Luo YQ, Bian ZY, Xu DD, Tang JJ, Gao JM. Trienomycin A-simplified analogs: Synthesis and anti-neuroinflammatory activity. Bioorg Med Chem Lett 2023; 80:129122. [PMID: 36592870 DOI: 10.1016/j.bmcl.2022.129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
A series of novel trienomycin A (TA)-mimetic compounds (5a-p) have been designed, synthesized, and evaluated for their in vitro anti-neuroinflammatory and neuroprotective activities. Among them, compounds 5h, 5n, and 5o exhibits relatively strong NO inhibitory activity in LPS-activated BV-2 cells with the EC50 values of 12.4, 17.3, and 8.9 μM, respectively. Moreover, 5h showed evidently neuroprotective effect against H2O2-induced PC-12 cells without cytotoxicity at 20 μM. Overall, these compounds can provide a better understanding of the structure-activity relationship of TA and furnish research ideas for anti-neuroinflammatory and neuroprotective agents.
Collapse
Affiliation(s)
- Yu-Qing Luo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhao-Yuan Bian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Dan-Dan Xu
- School of Foundational Education, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, Tibet, PR China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
15
|
Castillo C, Bravo-Arrepol G, Wendt A, Saez-Orellana F, Millar C, Burgos CF, Gavilán J, Pacheco C, Ahumada-Rudolph R, Napiórkowska M, Pérez C, Becerra J, Fuentealba J, Cabrera-Pardo JR. Neuroprotective Properties of Eudesmin on a Cellular Model of Amyloid-β Peptide Toxicity. J Alzheimers Dis 2023; 94:S97-S108. [PMID: 36463456 PMCID: PMC10473145 DOI: 10.3233/jad-220935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. One of the hallmarks in AD is amyloid-β peptide (Aβ) accumulation, where the soluble oligomers of Aβ (AβOs) are the most toxic species, deteriorating the synaptic function, membrane integrity, and neuronal structures, which ultimately lead to apoptosis. Currently, there are no drugs to arrest AD progression, and current scientific efforts are focused on searching for novel leads to control this disease. Lignans are compounds extracted from conifers and have several medicinal properties. Eudesmin (Eu) is an extractable lignan from the wood of Araucaria araucana, a native tree from Chile. This metabolite has shown a range of biological properties, including the ability to control inflammation and antibacterial effects. OBJECTIVE In this study, the neuroprotective abilities of Eu on synaptic failure induced by AβOs were analyzed. METHODS Using neuronal models, PC12 cells, and in silico simulations we evaluated the neuroprotective effect of Eu (30 nM) against the toxicity induced by AβOs. RESULTS In primary cultures from mouse hippocampus, Eu preserved the synaptic structure against AβOs toxicity, maintaining stable levels of the presynaptic protein SV2 at the same concentration. Eu also averted synapsis failure from the AβOs toxicity by sustaining the frequencies of cytosolic Ca2+ transients. Finally, we found that Eu (30 nM) interacts with the Aβ aggregation process inducing a decrease in AβOs toxicity, suggesting an alternative mechanism to explain the neuroprotective activity of Eu. CONCLUSION We believe that Eu represents a novel lead that reduces the Aβ toxicity, opening new research venues for lignans as neuroprotective agents.
Collapse
Affiliation(s)
- Carolina Castillo
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gastón Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
| | - Aline Wendt
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Saez-Orellana
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Camila Millar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carla Pacheco
- Departamento de Bioquímica Clínica, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Claudia Pérez
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| |
Collapse
|
16
|
Chen X, Yin XY, Wang CC, Du P, Wang XS, Lu YC, Sun YW, Sun YH, Hu YM. Muse cells decrease the neuroinflammatory response by modulating the proportion of M1 and M2 microglia in vitro. Neural Regen Res 2023. [PMID: 35799545 PMCID: PMC9241390 DOI: 10.4103/1673-5374.343885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation hinders repair of the central nervous system (CNS). Stem cell transplantation is a very promising approach for treatment of CNS injuries. However, it is difficult to select seed cells that can both facilitate nerve regeneration and improve the microenvironment in the CNS. In this study, we isolated multilineage-differentiating stress-enduring (Muse) cells from bone marrow mesenchymal stem cells. We explored the anti-inflammatory effect and mechanism of Muse cells in vitro by coculture of Muse cells with lipopolysaccharide-stimulated microglia. Our results showed that Muse cells effectively reduced the transcription and secretion of tumor necrosis factor α and interleukin-1β and increased the expression of transforming growth factor-β and interleukin-10 in microglia. In addition, Muse cells decreased the number of M1 microglia and increased the proportion of M2 microglia in an inflammatory environment more effectively than bone marrow mesenchymal stem cells. We also show that Muse cells inhibited the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and inhibited the expression of the phosphorylated forms of transcription factor p65, nuclear factor (NF)-κB inhibitor alpha, and p38 mitogen-activated protein kinase (MAPK) in microglia. Therefore, we suggest Muse cells cause antineuroinflammatory effects by inhibition of the TLR4/MyD88/NF-κB and p38 MAPK signaling pathways in microglia. Our results shed light on the function of Muse cells in relation to CNS diseases and provide insight into the selection of seed cells.
Collapse
|
17
|
Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022; 27:molecules27175481. [PMID: 36080253 PMCID: PMC9457753 DOI: 10.3390/molecules27175481] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.
Collapse
|
18
|
Zhong W, Li M, Han S, Sun J, Cao L, Mu Z, Du X, Cui Y, Feng Y, Zhong G. Carpelipines C and D, Two Anti-Inflammatory Germacranolides from the Flowers of Carpesium lipskyi Winkl. (Asteraceae). Chem Biodivers 2022; 19:e202200415. [PMID: 35608872 DOI: 10.1002/cbdv.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
Two new germacranolides, carpelipine C (1) and carpelipine D (2), together with four known ones (3-6), were isolated from Carpesium lipskyi Winkl. flowers, a folk Tibetan herbal medicine with antipyretic-analgesic and anti-inflammatory effects. The chemical structures of new structure were illuminated by diversified spectroscopic and X-ray crystallographic analyses. Compounds 1 and 3 dramatically suppressed the synthesis of NO and decreased pre-inflammatory protein expression of iNOS and COX-2 in LPS-induced RAW264.7 cells. Furthermore, it was revealed that NF-κB/MAPK signaling pathway were involved in the anti-inflammatory process of 1 and 3, and their effects on reducing oxidative stress by activating Nrf2/HO-1 pathway were also measured. This article indicated that the traditional use of C. lipskyi to treat inflammatory diseases has a certain rationality.
Collapse
Affiliation(s)
- Weihong Zhong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Min Li
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Shan Han
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Jie Sun
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Lan Cao
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Zejing Mu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Xiaolang Du
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yushun Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330046, P. R. China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330046, P. R. China
| | - Guoyue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330046, P. R. China
| |
Collapse
|
19
|
Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids. Molecules 2022; 27:molecules27082501. [PMID: 35458699 PMCID: PMC9031474 DOI: 10.3390/molecules27082501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids.
Collapse
|
20
|
Imidazolylacetophenone oxime-based multifunctional neuroprotective agents: Discovery and structure-activity relationships. Eur J Med Chem 2022; 228:114031. [PMID: 34875520 DOI: 10.1016/j.ejmech.2021.114031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) possesses a complex pathogenetic mechanism. Nowadays, multitarget agents are considered to have potential in effectively treating AD via triggering molecules in functionally complementary pathways at the same time. Here, based on the screening (∼1400 compounds) against neuroinflammation, an imidazolylacetophenone oxime ether (IOE) was discovered as a novel hit. In order to obtain SARs, a series of imidazolylacetophenone oxime derivatives were constructed, and their C=N bonds were confirmed as the Z configuration by single crystals. These derivatives exhibited potential multifunctional neuroprotective effects including anti-neuroinflammatory, antioxidative damage, metal-chelating, inhibition of acetylcholinesterase (AChE) properties. Among these derivatives, compound 12i displayed the most potent inhibitory activity against nitric oxide (NO) production with EC50 value of 0.57 μM 12i can dose-dependently suppress the expression of iNOS and COX-2 but not change the expression of HO-1 protein. Moreover, 12i exhibited evidently neuroprotective effects on H2O2-induced PC12 cells damage and ferroptosis without cytotoxicity at 10 μM, as well as selectively metal chelating properties via chelating Cu2+. In addition, 12i showed a mixed-type inhibitory effect on AChE in vitro. The structure-activity relationships (SARs) analysis indicated that dioxolane groups on benzene ring and rigid oxime ester can improve the activity. Parallel artificial membrane permeation assay (PAMPA) also verified that 12i can overcome the blood-brain barrier (BBB). Overall, this is the first report on imidazolylacetophenone oxime-based multifunctional neuroprotective effects, suggesting that this type of compounds might be novel multifunctional agents against AD.
Collapse
|
21
|
Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022; 50:102229. [PMID: 35026701 PMCID: PMC8760418 DOI: 10.1016/j.redox.2022.102229] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
22
|
Wang MR, Huang LF, Guo C, Yang J, Dong S, Tang JJ, Gao JM. Identification of NLRP3 as a covalent target of 1,6-O,O-diacetylbritannilactone against neuroinflammation by quantitative thiol reactivity profiling (QTRP). Bioorg Chem 2021; 119:105536. [PMID: 34894577 DOI: 10.1016/j.bioorg.2021.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Neuroinflammation plays a key etiological role in the progressive neuronal damage of neurodegenerative diseases. Our phenotypic-based screening discovered 1,6-O,O-diacetylbritannilactone (OABL, 1) from Inula britannica exhibited the potential anti-neuroinflammatory activity as well as a favorable blood-brain barrier penetration. 1 and its active derivative Br-OABL (2) with insert of Br at the C-14 position both modulated TLR4/NF-kB/MAPK pathways. However, proteome-wide identification of 1 binding proteins remains unclear. Here, we employed an adapted isoTOP-ABPP, quantitative thiol reactivity profiling (QTRP) approach, to identify and quantify thiol reactivity binding proteins in murine microglia BV-2 cells. We screened out 15 proteins co-targeted by 1 and 2, which are involved in cellular response to oxidative stress and negative regulation NF-κB transcription factor in biological processes. In site-specific profiling, NLRP3 was identified as a covalent target of 1 and 2 for the first time, and the Cys483 of NLRP3 NACHT domain was identified as one active-site of NLRP3 cysteine residues that can be covalently modified by the α-methylene-γ-lactone moiety. Furthermore, NLRP3 was validated to be directly binded by 1 and 2 by cellular thermo shift assay (CETSA) and activity-based protein profiling (ABPP), and NLRP3 functions were also verified by small interfering RNA approach. Notably, OABL treatment (i.p., 20 mg/kg/day) for 21 days reduced inflammation in 5XFAD mice brain. Together, we applied the QTRP to uncover the binding proteins of OABL in BV-2 cells, among which NLRP3 was revealed as a new covalent target of 1 and 2 against neuroinflammation.
Collapse
Affiliation(s)
- Min-Ran Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
23
|
Tang JJ, Guo C, Peng XN, Guo XC, Zhang Q, Tian JM, Gao JM. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem 2021; 116:105389. [PMID: 34601295 DOI: 10.1016/j.bioorg.2021.105389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/05/2023]
Abstract
Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10β-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8β-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8β-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|