1
|
Tariq A, Shoaib M, Qu L, Shoukat S, Nan X, Song J. Exploring 4 th generation EGFR inhibitors: A review of clinical outcomes and structural binding insights. Eur J Pharmacol 2025; 997:177608. [PMID: 40216184 DOI: 10.1016/j.ejphar.2025.177608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Epidermal growth factor receptor (EGFR) is a potential target for anticancer therapies and plays a crucial role in cell growth, survival, and metastasis. EGFR gene mutations trigger aberrant signaling, leading to non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) effectively target these mutations to treat NSCLC. While the first three generations of EGFR TKIs have been proven effective, the emergence of the EGFR-C797S resistance mutation poses a new challenge. To address this, various synthetic EGFR TKIs have been developed. In this review, we have summarized the EGFR TKIs reported in the past five years, focusing on their clinical outcomes and structure-activity relationship analysis. We have also explored binding modes and interactions between the binding pocket and ligands to provide insights into the mechanisms of these inhibitors, which contribute to advancements in targeted cancer therapy. Additionally, artificial Intelligence-driven methods, including recursive neural networks and reinforcement learning, have revolutionized EGFR inhibitor design by facilitating rapid screening, predicting EGFR mutations, and novel compound generation.
Collapse
Affiliation(s)
- Amina Tariq
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Muhammad Shoaib
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lingbo Qu
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China; Institute of Chemistry, Henan Academy of Science, Zhengzhou, Henan, 450046, China
| | - Sana Shoukat
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xiaofei Nan
- School of Computer Science and Artificial Intelligence, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jinshuai Song
- College of Chemistry, Pingyuan Laboratory, and State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Ahmad I, Patel HM. From challenges to solutions: A review of fourth-generation EGFR tyrosine kinase inhibitors to overcome the C797S triple mutation in non-small cell lung cancer. Eur J Med Chem 2025; 284:117178. [PMID: 39724727 DOI: 10.1016/j.ejmech.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
This Review discusses recent advancements in the development of fourth-generation "Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs)" targeting resistance mutations, with an emphasis on the C797S mutation in "Non-small Cell Lung Cancer (NSCLC)". While first, second, and third-generation EGFR-TKIs have made significant progress in overcoming EGFR kinase resistance, the emergence of the EGFR-C797S mutation poses a substantial challenge, particularly in the context of resistance to Osimertinib. Fourth-generation TKIs are classified into ATP-competitive, allosteric, and ortho-allosteric inhibitors, with the goal of enhancing specificity for mutant EGFR while minimizing off-target effects on wild-type EGFR to reduce toxicity. This Review provides a detailed analysis of structural modifications and their impact on drug potency and selectivity, with the aim of improving efficacy against resistant NSCLC. Preclinical and early-phase clinical trials of these inhibitors are promising, though further optimization of pharmacokinetic and safety profiles is crucial for future clinical success. This work offers key insights for medicinal chemists in the design and development of fourth-generation EGFR inhibitors to address drug-resistant mutations in NSCLC.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
3
|
Patil BR, Patel HM. Catalytic Lysine745 targeting strategy in fourth-generation EGFR tyrosine kinase inhibitors to address C797S mutation resistance. Eur J Med Chem 2025; 283:117140. [PMID: 39681043 DOI: 10.1016/j.ejmech.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Overcoming resistance to third-generation tyrosine kinase inhibitors (TKIs) such as Osimertinib, particularly due to the emergence of the C797S mutation, remains a key challenge in non-small cell lung cancer (NSCLC) therapy. This review highlights recent advancements in the development of fourth-generation EGFR inhibitors that specifically target the catalytic Lys745 residue, aiming to overcome resistance associated with Osimertinib. Both covalent and non-covalent inhibitors targeting Lys745 were explored, using warheads like sulfonyl fluoride, phosphine oxides, esters, and trisubstituted imidazoles. Sulfonyl fluoride was particularly effective in forming covalent bonds with Lys745, while non-covalent analogues demonstrated flexibility with reduced off-target effects. The manuscript highlights the importance of warhead design, molecular docking, protein XRD study and structure-activity relationships (SAR) for optimizing Lys745-targeting inhibitors. The study suggests that hybrid scaffolds combining key pharmacophoric features from Osimertinib and Brigatinib along with Lys745 targeting warheads, could enhance selectivity and potency. Future efforts should focus on refining bioavailability, identifying new scaffolds by employing drug design strategies. Fourth-generation TKIs targeting Lys745 offer a novel therapeutic avenue, potentially overcoming mutation-induced resistance and improving NSCLC treatment outcomes. This approach represents a critical advancement toward durable clinical responses in patients with drug-resistant cancer.
Collapse
Affiliation(s)
- Bhatu R Patil
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India
| | - Harun M Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India.
| |
Collapse
|
4
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
5
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
6
|
Yuan B, Feng Y, Ma M, Duan W, Wu Y, Liu J, Zhao HY, Yang Z, Zhang SQ, Xin M. Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation. J Med Chem 2024; 67:20076-20099. [PMID: 39561981 DOI: 10.1021/acs.jmedchem.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Targeting the lysine residue of protein kinases to develop covalent inhibitors is an emerging hotspot. Herein, we have reported an approach to develop lysine-targeted covalent inhibitors of PI3Kδ by in situ interaction upgradation of the H-bonding to covalent bonding. Several warhead groups were introduced and screened in situ, leading to lysine-targeted covalent inhibitors bearing aromatic esters with high bioactivity and PI3Kδ selectivity. Compound A11 bearing phenolic ester was finally optimized to show a long duration of action in SU-DHL-6 cells by multiple assays. Docking simulation and further protein mass spectrometry confirmed that A11 bound to PI3Kδ by covalent-bonding interactions with Lys779. Furthermore, A11 exhibited potently antitumor efficacy without obvious toxicity in the SU-DHL-6 and Pfeiffer xenograft mouse models. This study identified A11 to be a much more effective antitumor agent in vitro and in vivo as a lysine-targeted covalent inhibitor, and it also provided a practical approach for the development of lysine-targeted covalent inhibitors.
Collapse
Affiliation(s)
- Bo Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yifan Feng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Mengyan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Weiming Duan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yujie Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Jiaxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Hong-Yi Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Zhe Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - San-Qi Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Minhang Xin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
7
|
Das D, Xie L, Hong J. Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019-2024). RSC Med Chem 2024:d4md00384e. [PMID: 39246743 PMCID: PMC11376191 DOI: 10.1039/d4md00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for the major portion (80-85%) of all lung cancer cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are commonly used as the targeted therapy for EGFR-mutated NSCLC. The FDA has approved first-, second- and third-generation EGFR-TKIs as therapeutics options. Osimertinib, the third-generation irreversible EGFR-TKI, has been approved for the treatment of NSCLC patients with the EGFRT790M mutation. However, due to the EGFRC797S mutation in the kinase domain of EGFR, resistance to osimertinib is observed and that limits the long-term effectiveness of the drug. The C797S mutation is one of the major causes of drug resistance against the third-generation EGFR TKIs. The C797S mutations including EGFR double mutations (19Del/C797S or L858R/C797S) and or EGFR triple mutations (19Del/T790M/C797S or L858R/T790M/C797S) cause major resistance to the third-generation EGFR-TKIs. Therefore, the discovery and development of fourth-generation EGFR-TKIs to target triple mutant EGFR with C797S mutation is a challenging topic in medicinal chemistry research. In this review, we discuss the discovery of novel fourth-generation EGFR TKIs, medicinal chemistry approaches and the strategies to overcome the C797S mutations. In vitro activities of EGFR-TKIs (2019-2024) against mutant EGFR TK, anti-proliferative activities, structural modifications, binding modes of the inhibitors and in vivo efficacies in animal models are discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Lingzhi Xie
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| |
Collapse
|
8
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Koperniku A, Meanwell NA. Tying the knot with lysine. Nat Rev Chem 2024; 8:235-237. [PMID: 38499680 DOI: 10.1038/s41570-024-00592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Ana Koperniku
- The Center for the Study of Language and Information, Stanford University, Stanford, CA, USA.
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Insitute, Doylestown, PA, USA
- The School of Pharmacy, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Tang G, Wang W, Zhu C, Huang H, Chen P, Wang X, Xu M, Sun J, Zhang CJ, Xiao Q, Gao L, Zhang ZM, Yao SQ. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angew Chem Int Ed Engl 2024; 63:e202316394. [PMID: 38248139 DOI: 10.1002/anie.202316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
11
|
Suriya U, Mahalapbutr P, Geronikaki A, Kartsev V, Zubenko A, Divaeva L, Chekrisheva V, Petrou A, Oopkaew L, Somngam P, Choowongkomon K, Rungrotmongkol T. Discovery of furopyridine-based compounds as novel inhibitors of Janus kinase 2: In silico and in vitro studies. Int J Biol Macromol 2024; 260:129308. [PMID: 38218283 DOI: 10.1016/j.ijbiomac.2024.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Janus kinase 2 (JAK2), one of the JAK isoforms participating in a JAK/STAT signaling cascade, has been considered a potential clinical target owing to its critical role in physiological processes involved in cell growth, survival, development, and differentiation of various cell types, especially immune and hematopoietic cells. Substantial studies have proven that the inhibition of this target could disrupt the JAK/STAT pathway and provide therapeutic outcomes for cancer, immune disorders, inflammation, and COVID-19. Herein, we performed docking-based virtual screening of 63 in-house furopyridine-based compounds and verified the first-round screened compounds by in vitro enzyme- and cell-based assays. By shedding light on the integration of both in silico and in vitro methods, we could elucidate two promising compounds. PD19 showed cytotoxic effects on human erythroblast cell lines (TF-1 and HEL) with IC50 values of 57.27 and 27.28 μM, respectively, while PD12 exhibited a cytotoxic effect on TF-1 with an IC50 value of 83.47 μM by suppressing JAK2/STAT5 autophosphorylation. In addition, all screened compounds were predicted to meet drug-like criteria based on Lipinski's rule of five, and none of the extreme toxicity features were found. Molecular dynamic simulations revealed that PD12 and PD19 could form stable complexes with JAK2 in an aqueous environment, and the van der Waals interactions were the main force driving the complex formation. Besides, all compounds sufficiently interacted with surrounding amino acids in all crucial regions, including glycine, catalytic, and activation loops. Altogether, PD12 and PD19 identified here could potentially be developed as novel therapeutic inhibitors disrupting the JAK/STAT pathway.
Collapse
Affiliation(s)
- Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khan Kaen 40002, Thailand.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | | | - Alexsander Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Liudmila Divaeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Lipika Oopkaew
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phitchakorn Somngam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Wei J, Chai Y, Zhou J, Pan Y, Jia T, Xiong L, Yao G, Zhang Z, Xu H, Zhao C. Discovery of Arylfluorosulfates as Novel Fungicidal Agents against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3456-3468. [PMID: 38331710 DOI: 10.1021/acs.jafc.3c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 μg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 μg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 μg/mL, respectively) comparable to carbendazim (EC50 = 1.02 μg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 μg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 μg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.
Collapse
Affiliation(s)
- Junjie Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yunlong Chai
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiarun Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaxin Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Tianhao Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lantu Xiong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Chang H, Zhang Z, Tian J, Bai T, Xiao Z, Wang D, Qiao R, Li C. Machine Learning-Based Virtual Screening and Identification of the Fourth-Generation EGFR Inhibitors. ACS OMEGA 2024; 9:2314-2324. [PMID: 38250375 PMCID: PMC10795152 DOI: 10.1021/acsomega.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal regulatory role in treating patients with advanced nonsmall cell lung cancer (NSCLC). Following the emergence of the EGFR tertiary CIS C797S mutation, all types of inhibitors lose their inhibitory activity, necessitating the urgent development of new inhibitors. Computer systems employ machine learning methods to process substantial volumes of data and construct models that enable more accurate predictions of the outcomes of new inputs. The purpose of this article is to uncover innovative fourth-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with the aid of machine learning techniques. The paper's data set was high-dimensional and sparse, encompassing both structured and unstructured descriptors. To address this considerable challenge, we introduced a fusion framework to select critical molecule descriptors by integrating the full quadratic effect model and the Lasso model. Based on structural descriptors obtained from the full quadratic effect model, we conceived and synthesized a variety of small-molecule inhibitors. These inhibitors demonstrated potent inhibitory effects on the two mutated kinases L858R/T790M/C797S and Del19/T790M/C797S. Moreover, we applied our model to virtual screening, successfully identifying four hit compounds. We have evaluated these hit ADME characteristics and look forward to conducting activity evaluations on them in the future to discover a new generation of EGFR-TKI.
Collapse
Affiliation(s)
- Hao Chang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyu Zhang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Jiaxin Tian
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tian Bai
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Zijie Xiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dianpeng Wang
- School
of Mathematics and Statistics, Beijing Institute
of Technology, Beijing 100081, P. R. China
| | - Renzhong Qiao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
14
|
Kawano M, Murakawa S, Higashiguchi K, Matsuda K, Tamura T, Hamachi I. Lysine-Reactive N-Acyl- N-aryl Sulfonamide Warheads: Improved Reaction Properties and Application in the Covalent Inhibition of an Ibrutinib-Resistant BTK Mutant. J Am Chem Soc 2023; 145:26202-26212. [PMID: 37987622 DOI: 10.1021/jacs.3c08740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The covalent inhibition of a target protein has gained widespread attention in the field of drug discovery. Most of the current covalent drugs utilize the high reactivity of cysteines toward modest electrophiles. However, there is a growing need for warheads that can target lysine residues to expand the range of covalently druggable proteins and to deal with emerging proteins with mutations resistant to cysteine-targeted covalent drugs. We have recently developed an N-acyl-N-alkyl sulfonamide (NASA) as a lysine-targeted electrophile. Despite its successful application, this NASA warhead suffered from instability in physiological environments, such as serum-containing medium, because of its high intrinsic reactivity. In this study, we sought to modify the structure of the NASA warhead and found that N-acyl-N-aryl sulfonamides (ArNASAs) are promising electrophiles for use in a lysine-targeted covalent inhibition strategy. We prepared a focused library of ArNASA derivatives with diverse structures and reactivity and identified several warhead candidates with suppressed hydrolysis-mediated inactivation and reduced nonspecific reactions with off-target proteins, without sacrificing the reactivity toward the target. These reaction properties enabled the improved covalent inhibition of intracellular heat shock protein 90 (HSP90) in the presence of serum and the development of the first irreversible inhibitor for ibrutinib-resistant Bruton's tyrosine kinase (BTK) bearing the C481S mutation. This study clearly demonstrated the use of a set of ArNASA warheads to create highly potent covalent drugs and highlighted the importance of enriching the current arsenal of lysine-reactive warheads.
Collapse
Affiliation(s)
- Masaharu Kawano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Syunsuke Murakawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
15
|
Xi XX, Zhao HY, Mao YZ, Xin M, Zhang SQ. Modification of osimertinib to discover new potent EGFR C797S-TK inhibitors. Eur J Med Chem 2023; 261:115865. [PMID: 37839342 DOI: 10.1016/j.ejmech.2023.115865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
The EGFRC797S mutation is a dominant mechanism of acquired resistance after the treatment of non-small cell lung cancer (NSCLC) with osimertinib in clinic. To date, there is no inhibitor approved to overcome the resistance caused by osimertinib. In this study, a series of compounds with phenylamino-pyrimidine scaffold deriving from osimertinib were designed, synthesized and evaluated as fourth-generation EGFRC797S-TK inhibitors. Consequently, compound Os30 exhibited potent inhibitory activities against both EGFRDel19/T790M/C797S TK and EGFRL858R/T790M/C797S TK with IC50 values of 18 nM and 113 nM, respectively. Moreover, Os30 can powerfully inhibit the proliferation of KC-0116 (BaF3-EGFRDel19/T790M/C797S) and KC-0122 (BaF3-EGFRL858R/T790M/C797S) cells. In addition, Os30 can suppress EGFR phosphorylation in a concentration-dependent manner in KC-0116 cells, arrest KC-0116 cells at G1 phase and induce the apoptosis of KC-0116 cells. More importantly, Os30 showed potent antitumor efficacy in the KC-0116 cells xenograft nude mice tumor model with the tumor growth inhibitory rate of 77.6% at a dosage of 40 mg/kg. These findings demonstrate that modification of osimertinib can discover new potent EGFRC797S-TK inhibitors, and compound Os30 is a potent fourth-generation EGFR inhibitor to treat NSCLC with EGFmRC797S mutation.
Collapse
Affiliation(s)
- Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yu-Ze Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
16
|
Tang G, Wang W, Wang X, Ding K, Ngan SC, Chen JY, Sze SK, Gao L, Yuan P, Lu X, Yao SQ. Cell-active, irreversible covalent inhibitors that selectively target the catalytic lysine of EGFR by using fluorosulfate-based SuFEx chemistry. Eur J Med Chem 2023; 259:115671. [PMID: 37499291 DOI: 10.1016/j.ejmech.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR. The optimized compound 26 (as well as its close analog 30), possessing a novel arylfluorosulfate group (ArOSO2F), showed excellent in vitro potency (as low as 0.19 nM in independent IC50 determination) and selectivity against EGFR and many of its drug-resistant mutants. Both intact protein mass spectrometry (MS) and site-mapping analysis revealed that compound 26 covalently bound to EGFR at K745 through the formation of a sulfamate. In addition, compound 26 displayed good anti-proliferative potency against EGFR-overexpressing HCC827 cells by inhibiting endogenous EGFR autophosphorylation. The pharmacokinetic studies of compound 26 demonstrated the druggable potential of other ArOSO2F-containing compounds. Finally, competitive activity-based protein profiling (ABPP), cellular thermal shift assay (CETSA), as well as cellular wash-out experiments, all showed compound 26 to be the first cell-active, fluorosulfate-based targeted covalent inhibitor (TCI) of protein kinases capable of covalently engaging the catalytically conserved lysine of its target in live mammalian cells.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jiao-Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China.
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
17
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Hengphasatporn K, Aiebchun T, Mahalapbutr P, Auepattanapong A, Khaikate O, Choowongkomon K, Kuhakarn C, Meesin J, Shigeta Y, Rungrotmongkol T. Sulfonylated Indeno[1,2- c]quinoline Derivatives as Potent EGFR Tyrosine Kinase Inhibitors. ACS OMEGA 2023; 8:19645-19655. [PMID: 37305292 PMCID: PMC10249031 DOI: 10.1021/acsomega.3c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
The epidermal growth factor receptor (EGFR) has been considered a potential target for lung cancer therapy due to its essential role in regulating the survival and proliferation of cancer cells. Although erlotinib, a potent EGFR tyrosine kinase (EGFR-TK) inhibitor, has been used as the first-line drug for lung cancer treatment, acquired drug resistance caused by the T790M secondary mutation of EGFR-TK inevitably develops after a median response duration of 9-13 months. Thus, the search for promising compounds to effectively target EGFR-TK has become an imperative necessity. In this study, the kinase inhibitory activities of a series of sulfonylated indeno[1,2-c]quinolines (SIQs) against EGFR-TK were experimentally and theoretically investigated. Among the 23 SIQ derivatives studied, eight compounds showed enhanced EGFR-TK inhibitory activity (IC50 values of ca. 0.6-10.2 nM) compared to the known drug erlotinib (IC50 of ∼20 nM). In a cell-based assay in human cancer cell lines with EGFR overexpression (A549 and A431 cells), the eight selected SIQs all showed more significant cytotoxicity against A431 than A549 cells, consistent with the higher EGFR expression in A431 cells. Molecular docking and FMO-RIMP2/PCM calculations revealed that SIQ17 occupies the ATP-binding site of EGFR-TK, where its sulfonyl group is mainly stabilized by C797, L718, and E762 residues. Triplicate 500 ns molecular dynamics (MD) simulations also confirmed the binding strength of SIQ17 in complex with EGFR. Overall, the potent SIQ compounds obtained in this work could be further optimized for developing novel anticancer drug candidates targeting EGFR-TK.
Collapse
Affiliation(s)
- Kowit Hengphasatporn
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thitinan Aiebchun
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Atima Auepattanapong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10330, Thailand
| | - Onnicha Khaikate
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10330, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Chutima Kuhakarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10330, Thailand
| | - Jatuporn Meesin
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Petri L, Ábrányi-Balogh P, Csorba N, Keeley A, Simon J, Ranđelović I, Tóvári J, Schlosser G, Szabó D, Drahos L, Keserű GM. Activation-Free Sulfonyl Fluoride Probes for Fragment Screening. Molecules 2023; 28:molecules28073042. [PMID: 37049805 PMCID: PMC10096327 DOI: 10.3390/molecules28073042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
SuFEx chemistry is based on the unique reactivity of the sulfonyl fluoride group with a range of nucleophiles. Accordingly, sulfonyl fluorides label multiple nucleophilic amino acid residues, making these reagents popular in both chemical biology and medicinal chemistry applications. The reactivity of sulfonyl fluorides nominates this warhead chemotype as a candidate for an external, activation-free general labelling tag. Here, we report the synthesis and characterization of a small sulfonyl fluoride library that yielded the 3-carboxybenzenesulfonyl fluoride warhead for tagging tractable targets at nucleophilic residues. Based on these results, we propose that coupling diverse fragments to this warhead would result in a library of sulfonyl fluoride bits (SuFBits), available for screening against protein targets. SuFBits will label the target if it binds to the core fragment, which facilitates the identification of weak fragments by mass spectrometry.
Collapse
Affiliation(s)
- László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Aaron Keeley
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - József Simon
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Research Centre for Natural Sciences, MS Metabolomics Research Group, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | | | - József Tóvári
- Department of Experimental Pharmacology and National Tumor Biology Laboratory POB 21, National Institute of Oncology, 1525 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Dániel Szabó
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| |
Collapse
|
20
|
Gilbert K, Vuorinen A, Aatkar A, Pogány P, Pettinger J, Grant EK, Kirkpatrick JM, Rittinger K, House D, Burley GA, Bush JT. Profiling Sulfur(VI) Fluorides as Reactive Functionalities for Chemical Biology Tools and Expansion of the Ligandable Proteome. ACS Chem Biol 2023; 18:285-295. [PMID: 36649130 PMCID: PMC9942091 DOI: 10.1021/acschembio.2c00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Here, we report a comprehensive profiling of sulfur(VI) fluorides (SVI-Fs) as reactive groups for chemical biology applications. SVI-Fs are reactive functionalities that modify lysine, tyrosine, histidine, and serine sidechains. A panel of SVI-Fs were studied with respect to hydrolytic stability and reactivity with nucleophilic amino acid sidechains. The use of SVI-Fs to covalently modify carbonic anhydrase II (CAII) and a range of kinases was then investigated. Finally, the SVI-F panel was used in live cell chemoproteomic workflows, identifying novel protein targets based on the type of SVI-F used. This work highlights how SVI-F reactivity can be used as a tool to expand the liganded proteome.
Collapse
Affiliation(s)
- Katharine
E. Gilbert
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Aini Vuorinen
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Arron Aatkar
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Peter Pogány
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Jonathan Pettinger
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Emma K. Grant
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | | | - Katrin Rittinger
- The
Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - David House
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Glenn A. Burley
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| |
Collapse
|
21
|
Chen P, Tang G, Zhu C, Sun J, Wang X, Xiang M, Huang H, Wang W, Li L, Zhang ZM, Gao L, Yao SQ. 2-Ethynylbenzaldehyde-Based, Lysine-Targeting Irreversible Covalent Inhibitors for Protein Kinases and Nonkinases. J Am Chem Soc 2023; 145:3844-3849. [PMID: 36774655 DOI: 10.1021/jacs.2c11595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme. We showed the resulting compounds were cell-active, capable of covalently engaging endogenous ABL kinase in K562 cells with long-residence time and few off-targets. We further validated the generality of this strategy by developing EBA-based irreversible inhibitors against EGFR (a kinase) and Mcl-1 (a nonkinase) that covalently reacted with the catalytic and noncatalytic lysine within each target.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
22
|
Arafet K, Scalvini L, Galvani F, Martí S, Moliner V, Mor M, Lodola A. Mechanistic Modeling of Lys745 Sulfonylation in EGFR C797S Reveals Chemical Determinants for Inhibitor Activity and Discriminates Reversible from Irreversible Agents. J Chem Inf Model 2023; 63:1301-1312. [PMID: 36762429 PMCID: PMC9976278 DOI: 10.1021/acs.jcim.2c01586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Targeted covalent inhibitors hold promise for drug discovery, particularly for kinases. Targeting the catalytic lysine of epidermal growth factor receptor (EGFR) has attracted attention as a new strategy to overcome resistance due to the emergence of C797S mutation. Sulfonyl fluoride derivatives able to inhibit EGFRL858R/T790M/C797S by sulfonylation of Lys745 have been reported. However, atomistic details of this process are still poorly understood. Here, we describe the mechanism of inhibition of an innovative class of compounds that covalently engage the catalytic lysine of EGFR, through a sulfur(VI) fluoride exchange (SuFEx) process, with the help of hybrid quantum mechanics/molecular mechanics (QM/MM) and path collective variables (PCVs) approaches. Our simulations identify the chemical determinants accounting for the irreversible activity of agents targeting Lys745 and provide hints for the further optimization of sulfonyl fluoride agents.
Collapse
Affiliation(s)
- Kemel Arafet
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Sergio Martí
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,. Phone: +39 0521 905062. Fax: +39 0521 905006
| |
Collapse
|
23
|
Zhang M, Yang Y, Wang Y, Wang J, Wu H, Zhu Y. Synthesis and Evaluation of 2-Amine-4-oxyphosaniline Pyrimidine Derivatives as EGFR L858R/T790M/C797S Mutant Inhibitors. Chem Pharm Bull (Tokyo) 2023; 71:140-147. [PMID: 36517026 DOI: 10.1248/cpb.c22-00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptor (EGFR) C797S mutation leads to Osimertinib drug resistance by disturbing the covalent biding of Michael acceptor group to the Cys797 residue in the ATP biding cleft. In this manuscript, a class of 2-amine-4-oxyphosaniline pyrimidine derivatives were designed, synthesized and evaluated as new noncovalent reversible EGFR inhibitors against L858R/T790M/C797S (CTL) triple mutant. The kinases inhibitiory activity evaluation showed that four compounds exhibited significant inhibitory activities against CTL (IC50 < 30 nM). In particularly, the most promising compound 7a showed excellent enzymatic inhibitory activity against CTL with IC50 value of 9.9 nM, which was more potent than control compound Osimertinib. Moreover, cell proliferation assays indicated that 7a effectively inhibited H1975-EGFR L858R/T790M/C797S with IC50 value of 0.33 µM. Furthermore, compound 7a displayed good metabolic stabilities in human, rat and mouse liver microsomes, and the putative biding mode of compound 7a with ATP was revealed by molecular docking study. These findings strongly indicated that compound 7a was a promising L858R/T790M/C797S mutant EGFR inhibitor.
Collapse
Affiliation(s)
| | - Yang Yang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd
| | - Yunyun Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd
| | | | - Yongqiang Zhu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd.,College of Life Science, Nanjing Normal University
| |
Collapse
|
24
|
Ai Y, Yang Z, Yang Z, Wan S, Huang C, Huang C, Li M, Li Z, Zhang J, Zhang T. Discovery and Computational Studies of Potent Covalent Kinase Inhibitors with α-Substituent Electrophiles Targeting Cysteine. J Chem Inf Model 2023; 63:493-506. [PMID: 36632804 DOI: 10.1021/acs.jcim.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Both reversible noncovalent inhibitors and irreversible covalent inhibitors targeting tyrosine kinases have their disadvantages. The reversible covalent inhibitors with electrophilic group cyanoacrylamide as warheads reacting with cysteine residues could solve the dilemmas. However, there are still several unresolved issues regarding the electrophilic groups. In this manuscript, a series of EGFR inhibitors with double electron-withdrawing substituents introduced into the Cα position on the olefin bond were designed and synthesized. The binding structures and characteristics of inhibitors with the kinase in both the first noncovalent binding phase and the second covalent binding step were explored and combined with molecular docking and molecular dynamics simulations. Then, the reverse β-elimination reactions of the thiol-Michael adducts were investigated by applying density functional theory calculations. In addition, the effects of different electrophilic substituents of Cα on the binding between the inhibitors and kinase were elucidated. The results suggested that the electrophilicity and size of the electron-withdrawing groups play an important role in the specific interactions during the reaction. The compounds with the electron-withdrawing groups that had medium electrostatic and steric complementarity to the kinase active site could cooperatively stabilize the complexes and showed relatively good potent activities in the kinase assay experiment. The mechanical and structural information in this study could enhance our understanding of the functioning of the electron-withdrawing groups in the covalent inhibitors. The results might help to design efficient cysteine targeting inhibitors in the future.
Collapse
Affiliation(s)
- Yangcheng Ai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zichao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zilong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Shanhe Wan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Chunhui Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Chuan Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Mingxia Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Zhonghuang Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Jiajie Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
| | - Tingting Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, PR China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou510006, PR China
| |
Collapse
|
25
|
Chhouri H, Alexandre D, Grumolato L. Mechanisms of Acquired Resistance and Tolerance to EGFR Targeted Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15020504. [PMID: 36672453 PMCID: PMC9856371 DOI: 10.3390/cancers15020504] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancers (NSCLC) harboring activating mutations of the epidermal growth factor receptor (EGFR) are treated with specific tyrosine kinase inhibitors (EGFR-TKIs) of this receptor, resulting in clinically responses that can generally last several months. Unfortunately, EGFR-targeted therapy also favors the emergence of drug tolerant or resistant cells, ultimately resulting in tumor relapse. Recently, cellular barcoding strategies have arisen as a powerful tool to investigate the clonal evolution of these subpopulations in response to anti-cancer drugs. In this review, we provide an overview of the currently available treatment options for NSCLC, focusing on EGFR targeted therapy, and discuss the common mechanisms of resistance to EGFR-TKIs. We also review the characteristics of drug-tolerant persister (DTP) cells and the mechanistic basis of drug tolerance in EGFR-mutant NSCLC. Lastly, we address how cellular barcoding can be applied to investigate the response and the behavior of DTP cells upon EGFR-TKI treatment.
Collapse
|
26
|
Suriya U, Mahalapbutr P, Wimonsong W, Yotphan S, Choowongkomon K, Rungrotmongkol T. Quinoxalinones as A Novel Inhibitor Scaffold for EGFR (L858R/T790M/C797S) Tyrosine Kinase: Molecular Docking, Biological Evaluations, and Computational Insights. Molecules 2022; 27:8901. [PMID: 36558033 PMCID: PMC9788584 DOI: 10.3390/molecules27248901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Combating acquired drug resistance of EGFR tyrosine kinase (TK) is a great challenge and an urgent necessity in the management of non-small cell lung cancers. The advanced EGFR (L858R/T790M/C797S) triple mutation has been recently reported, and there have been no specific drugs approved for this strain. Therefore, our research aimed to search for effective agents that could impede the function of EGFR (L858R/T790M/C797S) TK by the integration of in silico and in vitro approaches. Our in-house quinoxalinone-containing compounds were screened through molecular docking and their biological activity was then verified by enzyme- and cell-based assay. We found that the four quinoxalinone-containing compounds including CPD4, CPD15, CPD16, and CPD21 were promising to be novel EGFR (L858R/T790M/C797S) TK inhibitors. The IC50 values measured by the enzyme-based assay were 3.04 ± 1.24 nM; 6.50 ± 3.02 nM,10.50 ± 1.10 nM; and 3.81 ± 1.80 nM, respectively, which are at a similar level to a reference drug; osimertinib (8.93 ± 3.01 nM). Besides that, they displayed cytotoxic effects on a lung cancer cell line (H1975) with IC50 values in the range of 3.47 to 79.43 μM. In this proposed study, we found that all screened compounds could interact with M793 at the hinge regions and two mutated residues including M790 and S797; which may be the main reason supporting the inhibitory activity in vitro. The structural dynamics revealed that the screened compounds have sufficient non-native contacts with surrounding amino acids and could be well-buried in the binding site's cleft. In addition, all predicted physicochemical parameters were favorable to be drug-like based on Lipinski's rule of five, and no extreme violation of toxicity features was found. Altogether, this study proposes a novel EGFR (L858R/T790M/C797S) TK inhibitor scaffold and provides a detailed understanding of compounds' recognition and susceptibility at the molecular level.
Collapse
Affiliation(s)
- Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khan Kaen 40002, Thailand
| | - Watchara Wimonsong
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | - Thanyada Rungrotmongkol
- Department of Biochemistry, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Identification of a novel nitroflavone-based scaffold for designing mutant-selective EGFR tyrosine kinase inhibitors targeting T790M and C797S resistance in advanced NSCLC. Bioorg Chem 2022; 129:106219. [DOI: 10.1016/j.bioorg.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
|
28
|
Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy. Eur J Med Chem 2022; 245:114900. [DOI: 10.1016/j.ejmech.2022.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
29
|
Zhao HY, Xi XX, Xin M, Zhang SQ. Overcoming C797S Mutation: The Challenges and Prospects of the Fourth-Generation EGFR-TKIs. Bioorg Chem 2022; 128:106057. [DOI: 10.1016/j.bioorg.2022.106057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
|
30
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
31
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang CJ, Zhang ZM, Gao L, Yao SQ. Cell-Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR-ABL Kinase. Angew Chem Int Ed Engl 2022; 61:e202203878. [PMID: 35438229 DOI: 10.1002/anie.202203878] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Despite recent interests in developing lysine-targeting covalent inhibitors, no general approach is available to create such compounds. We report herein a general approach to develop cell-active covalent inhibitors of protein kinases by targeting the conserved catalytic lysine residue using key SuFEx and salicylaldehyde-based imine chemistries. We validated the strategy by successfully developing (irreversible and reversible) covalent inhibitors against BCR-ABL kinase. Our lead compounds showed high levels of selectivity in biochemical assays, exhibited nanomolar potency against endogenous ABL kinase in cellular assays, and were active against most drug-resistant ABL mutations. Among them, the salicylaldehyde-containing A5 is the first-ever reversible covalent ABL inhibitor that possessed time-dependent ABL inhibition with prolonged residence time and few cellular off-targets in K562 cells. Bioinformatics further suggested the generality of our strategy against the human kinome.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
32
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang C, Zhang Z, Gao L, Yao SQ. Cell‐Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR‐ABL Kinase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chengjun Zhu
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Guanghui Tang
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chong‐Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Zhi‐Min Zhang
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
33
|
Chen H, Lai M, Zhang T, Chen Y, Tong L, Zhu S, Zhou Y, Ren X, Ding J, Xie H, Lu X, Ding K. Conformational Constrained 4-(1-Sulfonyl-3-indol)yl-2-phenylaminopyrimidine Derivatives as New Fourth-Generation Epidermal Growth Factor Receptor Inhibitors Targeting T790M/C797S Mutations. J Med Chem 2022; 65:6840-6858. [PMID: 35446588 DOI: 10.1021/acs.jmedchem.2c00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tertiary C797S mutation of epidermal growth factor receptor (EGFR)-mediated resistance in non-small-cell-lung-cancer (NSCLC) patients is still an unmet clinical need. Several classes of adenosine 5'-triphosphate-competitive or allosteric EGFRT790M/C797S inhibitors and degraders have been developed, but none of them have received approval from the regulatory agencies. Herein, we report the structure-based design of conformational constrained 4-(1-ethylsufonyl-3-indolyl)-2-phenylaminopyrimidines as new EGFRT790M/C797S inhibitors by using a macrocyclization strategy. Representative compound 18j potently inhibited EGFR19del/T790M/C797S and EGFRL858R/T790M/C797S mutants with IC50 values of 15.8 and 23.6 nM and suppressed Ba/F3-EGFRL858R/T790M/C797S and Ba/F3-EGFR19del/T790M/C797S cells with IC50 values of 0.036 and 0.052 μM, respectively, which is 10-20-fold more potent than brigatinib. 18j also potently inhibited the EGFR19del/T790M/C797S-mutated PC-9-OR NSCLC cell proliferation with an IC50 value of 0.644 μM but was less potent for parental Ba/F3 and A431 cells. This study provides a new lead compound for drug discovery to combat EGFRC797S-mediated resistance in NSCLC patients.
Collapse
Affiliation(s)
- Hao Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy and the 1st Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Mengzhen Lai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China.,Department of Pharmacology, School of Pharmacy, Fudan University, #826 Zhangheng Road, Shanghai 201203, China
| | - Tao Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuqing Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy and the 1st Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China
| | - Sujie Zhu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy and the 1st Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Nature Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, #19 Yuquan Road, Beijing 100049, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Cuiheng New District, Zhongshan 528400, China.,University of Chinese Academy of Sciences, #19 Yuquan Road, Beijing 100049, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy and the 1st Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy and the 1st Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.,State Key Laboratory of Bioorganic and Nature Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
34
|
Song C, Yang X. Osimertinib-Centered Therapy Against Uncommon Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer- A Mini Review. Front Oncol 2022; 12:834585. [PMID: 35494059 PMCID: PMC9047874 DOI: 10.3389/fonc.2022.834585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Osimertinib is a third-generation, irreversible mutant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Osimertinib is currently the first line drug recommended by National Comprehensive Cancer Network (NCCN) guidelines against lung cancer harboring the EGFR TKI-sensitive mutation and acquired EGFR T790M resistance mutation. Osimertinib demonstrated some efficacy in clinical trials and case reports in patients bearing certain uncommon EGFR mutations, but it is not active in patients with other mutations such as C797S. This mini-review presents the mechanisms underlying the variations in patient responses, discusses the use of osimertinib against non-small-cell lung carcinomas with uncommon EGFR mutations, and addresses the future prospects of osimertinib-centered therapy.
Collapse
Affiliation(s)
| | - Xueying Yang
- The Department of Thoracic and Cardiovascular Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Wang C, Wang X, Huang Z, Wang T, Nie Y, Yang S, Xiang R, Fan Y. Discovery and structural optimization of potent epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M/C797S resistance mutation for lung cancer treatment. Eur J Med Chem 2022; 237:114381. [DOI: 10.1016/j.ejmech.2022.114381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
|