1
|
Aboelfotouh HG, Abdallah M, Khalifa H, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. N 1-Benzoylated 5-(4-pyridinyl)indazole-based kinase inhibitors: Attaining haspin and Clk4 selectivity via modulation of the benzoyl substituents. Arch Pharm (Weinheim) 2024; 357:e2400020. [PMID: 38478964 DOI: 10.1002/ardp.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 06/04/2024]
Abstract
Haspin and Clk4 are both understudied protein kinases (PKs), offering potential targets for the development of new anticancer agents. Thus, the identification of new inhibitors targeting these PKs is of high interest. However, the inhibitors targeting haspin or Clk4 developed to date show a poor selectivity profile over other closely related PKs, increasing the risk of side effects. Herein, we present two newly developed N1-benzyolated 5-(4-pyridinyl)indazole-based inhibitors (18 and 19), derived from a newly identified indazole hit. These inhibitors exhibit an exceptional inhibitory profile toward haspin and/or Clk4. Compound 18 (2-acetyl benzoyl) showed a preference to inhibit Clk4 and haspin over a panel of closely related kinases, with sixfold selectivity for Clk4 (IC50 = 0.088 and 0.542 μM, respectively). Compound 19 (4-acetyl benzoyl) showed high selectivity against haspin over the common off-target kinases (Dyrks and Clks) with an IC50 of 0.155 μM for haspin. Molecular docking studies explained the remarkable selectivity of 18 and 19, elucidating how the new scaffold can be modified to toggle between inhibition of haspin or Clk4, despite the high homology of the ATP-binding sites. Their distinguished profile allows these compounds to be marked as interesting chemical probes to assess the selective inhibition of haspin and/or Clk4.
Collapse
Affiliation(s)
- Habiba G Aboelfotouh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mennatallah Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
2
|
Mostafa N, Chen PJ, Darwish SS, Su YC, Shiao MH, Piazza GA, Abadi AH, Engel M, Abdel-Halim M. N-Benzylated 5-Hydroxybenzothiophene-2-carboxamides as Multi-Targeted Clk/Dyrk Inhibitors and Potential Anticancer Agents. Cancers (Basel) 2024; 16:2033. [PMID: 38893153 PMCID: PMC11171218 DOI: 10.3390/cancers16112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Numerous studies have reported that Dyrk1A, Dyrk1B, and Clk1 are overexpressed in multiple cancers, suggesting a role in malignant disease. Here, we introduce a novel class of group-selective kinase inhibitors targeting Dyrk1A, Dyrk1B, and Clk1. This was achieved by modifying our earlier selective Clk1 inhibitors, which were based on the 5-methoxybenzothiophene-2-carboxamide scaffold. By incorporating a 5-hydroxy group, we increased the potential for additional hydrogen bond interactions that broadened the inhibitory effect to include Dyrk1A and Dyrk1B kinases. Within this series, compounds 12 and 17 emerged as the most potent multi-kinase inhibitors against Dyrk1A, Dyrk1B, and Clk1. Furthermore, when assessed against the most closely related kinases also implicated in cancer, the frontrunner compounds revealed additional inhibitory activity against Haspin and Clk2. Compounds 12 and 17 displayed high potency across various cancer cell lines with minimal effect on non-tumor cells. By examining the effect of these inhibitors on cell cycle distribution, compound 17 retained cells in the G2/M phase and induced apoptosis. Compounds 12 and 17 could also increase levels of cleaved caspase-3 and Bax, while decreasing the expression of the antiapoptotic Bcl-2 protein. These findings support the further study and development of these compounds as novel anticancer therapeutics.
Collapse
Affiliation(s)
- Noha Mostafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University, Cairo 12256, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan;
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan;
| | - Sarah S. Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Yu-Chieh Su
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan;
| | - Gary A. Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36832, USA;
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
| |
Collapse
|
3
|
Abd El-Rahman YA, Chen PJ, ElHady AK, Chen SH, Lin HC, El-Gamil DS, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. Development of 5-hydroxybenzothiophene derivatives as multi-kinase inhibitors with potential anti-cancer activity. Future Med Chem 2024; 16:1239-1254. [PMID: 38989990 PMCID: PMC11249150 DOI: 10.1080/17568919.2024.2342708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Chemoresistance in cancer challenges the classical therapeutic strategy of 'one molecule-one target'. To combat this, multi-target therapies that inhibit various cancer-relevant targets simultaneously are proposed. Methods & results: We introduce 5-hydroxybenzothiophene derivatives as effective multi-target kinase inhibitors, showing notable growth inhibitory activity across different cancer cell lines. Specifically, compound 16b, featuring a 5-hydroxybenzothiophene hydrazide scaffold, emerged as a potent inhibitor, displaying low IC50 values against key kinases and demonstrating significant anti-cancer effects, particularly against U87MG glioblastoma cells. It induced G2/M cell cycle arrest, apoptosis and inhibited cell migration by modulating apoptotic markers. Conclusion: 16b represents a promising lead for developing new anti-cancer agents targeting multiple kinases with affinity to the hydroxybenzothiophene core.
Collapse
Affiliation(s)
- Yara A Abd El-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan
- Graduate Institute of Medicine, I-Shou University, Kaohsiung, 824410, Taiwan
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung, 831301, Taiwan
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, 824410, Taiwan
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, 12451, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical & Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
4
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Discovery of novel 5-methoxybenzothiophene hydrazides as metabolically stable Clk1 inhibitors with high potency and unprecedented Clk1 isoenzyme selectivity. Eur J Med Chem 2023; 247:115019. [PMID: 36580731 DOI: 10.1016/j.ejmech.2022.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Clk1 kinase is a key modulator of the pre-mRNA alternative splicing machinery which has been proposed as a promising target for treatment of various tumour types, Duchenne's muscular dystrophy and viral infections such as HIV-1 and influenza. Most reported Clk1 inhibitors showed significant co-inhibition of Clk2 and Clk4 in particular, which limits their usefulness for deciphering the individual roles of the Clk1 isoform in physiology and disease. Herein, we present a new 5-methoxybenzothiophene scaffold, enabling for the first time selective inhibition of Clk1 even among the isoenzymes. The 3,5-difluorophenyl and 3,5-dichlorophenyl derivatives 26a and 27a (Clk1 IC50 = 1.4 and 1.7 nM, respectively) showed unprecedented selectivity factors of 15 and 8 over Clk4, and selectivity factors of 535 and 84 over Clk2. Furthermore, 26a and 27a exhibited good growth inhibitory activity in T24 cancer cells and long metabolic half-lives of almost 1 and 6.4 h, respectively. The overall favorable profile of our new Clk1 inhibitors suggests that they may be used in in vivo disease models or as probes to unravel the physiological or pathogenic roles of the Clk1 isoenzyme.
Collapse
|