1
|
Zhao S, Ali AS, Liu X, Yu Z, Kong X, Zhang Y, Paul Savage G, Xu Y, Lin B, Wu D, Francis CL. 1,3-Disubstituted-1,2,4-triazin-6-ones with potent activity against androgen receptor-dependent prostate cancer cells. Bioorg Med Chem 2024; 101:117634. [PMID: 38359754 DOI: 10.1016/j.bmc.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Synthesis and biological evaluation of a small, focused library of 1,3-disubstituted-1,2,4-triazin-6-ones for in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) castration-resistant prostate cancer (CRPC) cells led to highly active compounds with in vitro IC50 values against 22Rv1 cells of <200 nM, and with apparent selectivity for this cell type over PC3 cells. From metabolic/PK evaluations of these compounds, a 3-benzyl-1-(2,4-dichlorobenzyl) derivative had superior properties and showed considerably stronger activity, by nearly an order of magnitude, against AR-dependent LNCaP and C4-2B cells compared to AR-independent DU145 cells. This lead compound decreased AR expression in a dose and time dependent manner and displayed promising therapeutic effects in a 22Rv1 CRPC xenograft mouse model. Computational target prediction and subsequent docking studies suggested three potential known prostate cancer targets: p38a MAPK, TGF-β1, and HGFR/c-Met, with the latter case of c-Met appearing stronger, owing to close structural similarity of the lead compound to known pyridazin-3-one derivatives with potent c-Met inhibitory activity. RNA-seq analysis showed dramatic reduction of AR signalling pathway and/or target genes by the lead compound, subsequently confirmed by quantitative PCR analysis. The lead compound was highly inhibitory against HGF, the c-Met ligand, which fitted well with the computational target prediction and docking studies. These results suggest that this compound could be a promising starting point for the development of an effective therapy for the treatment of CRPC.
Collapse
Affiliation(s)
- Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdelsalam S Ali
- Drug Discovery Chemistry Team, CSIRO, Clayton, Victoria 3168, Australia
| | - Xiaomin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Yu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Kong
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - G Paul Savage
- Drug Discovery Chemistry Team, CSIRO, Clayton, Victoria 3168, Australia
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Medical University, Guangzhou 511436, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, Victoria 3168, Australia.
| |
Collapse
|
2
|
Farrell KD, Gao Y, Hughes DA, Henches R, Tu Z, Perkins MV, Zhang T, Francis CL. 3-Methoxy-2-phenylimidazo[1,2-b]pyridazines highly active against Mycobacterium tuberculosis and Mycobacterium marinum. Eur J Med Chem 2023; 259:115637. [PMID: 37524009 DOI: 10.1016/j.ejmech.2023.115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
A series of 3-methoxy-2-phenylimidazo[1,2-b]pyridazine derivatives which were highly active against autoluminescent Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm) in an in vitro assay were identified. SAR analysis showed that the most active compounds, which included a phenyl group bearing fluoro substituent(s) at C2, a methoxy function at C3, and a benzyl-heteroatom moiety at C6, exhibited in vitro MIC90 values generally around 0.63-1.26 μM against Mtb and Mm. However, these compounds were inactive against Mtb in vivo (mice), and investigations revealed very short metabolic half-lives (<10 min) when incubated with mouse liver microsomes. Multiple observations of side products produced from oxidative cleavage of the imidazole moiety during the chemical synthesis work suggested that this is a likely metabolic pathway leading to the lack of observed activity in vivo.
Collapse
Affiliation(s)
- Kyle D Farrell
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deborah A Hughes
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia
| | - Robin Henches
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia
| | - Zhengchao Tu
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530, China
| | - Michael V Perkins
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC, 3168, Australia.
| |
Collapse
|
3
|
Henches R, Ozga T, Gao Y, Tu Z, Zhang T, Francis CL. Synthesis and biological evaluation of 2-(Tetrazol-5-yl)sulfonylacetamides as inhibitors of Mycobacterium tuberculosis and Mycobacterium marinum. Bioorg Med Chem Lett 2023; 92:129391. [PMID: 37369331 DOI: 10.1016/j.bmcl.2023.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
A series of 2-(tetrazol-5-yl)sulfonylacetamide derivatives were synthesized and evaluated for their in vitro inhibitory activity against Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). The most active compounds exhibited in vitro MIC90 values of 1.25 μg/mL against Mtb, but they were less effective against Mm (MIC90 ≥ 10 μg/mL). Despite the most active compounds having favourable physicochemical properties and one of them having a half-life of ∼3 h when incubated with mouse liver microsomes, two representative highly active compounds showed strong chemical reactivity to cysteine derivatives, as surrogate in vivo sulfur-centred nucleophiles, indicating excessive electrophilicity, and therefore, likely indiscriminate chemical reactivity in vivo, representing an unacceptably high risk of general toxicity, and low likelihood of being therapeutically effective.
Collapse
Affiliation(s)
- Robin Henches
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia
| | - Théo Ozga
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengchao Tu
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Craig L Francis
- Drug Discovery Chemistry Team, CSIRO, Clayton, VIC 3168, Australia.
| |
Collapse
|