1
|
Sun X, Shan X, Zhu B, Cai Y, He Z, Zhou L, Yin L, Liu Y, Liu K, Zhang T, Yang N, Li Y, Lang T. 5-Fluorouracil Loaded Prebiotic-Probiotic Liposomes Modulating Gut Microbiota for Improving Colorectal Cancer Chemotherapy. Adv Healthc Mater 2024:e2403587. [PMID: 39676353 DOI: 10.1002/adhm.202403587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/16/2024] [Indexed: 12/17/2024]
Abstract
The gut microbiota exerts inhibitory effects on the occurrence and progression of colorectal cancer (CRC) through various mechanisms. Compared to traditional microbiota regulation methods, prebiotics and probiotics demonstrate significant advantages in terms of safety and patient adaptability. Their synergy not only improves the intestinal environment but also enhances the host's anti-tumor immune response. 5-Fluorouracil (5-FU) is a first-line chemotherapy drug that has a short half-life and low bioavailability. However, if administered in an untargeted manner, 5-FU also causes adverse reactions. Liposomes can improve the pharmacokinetic profile of drugs and provide targeted delivery to the tumor site, thereby reducing side effects. In this work, a 5-FU-loaded liposome is modified with the prebiotic xylan derivative Sxy and the probiotic Akkermansia muciniphila active phospholipid homolog 1,2-dipalmitoylphosphatidy-lethanolamine (DPPE) to construct FLSK. The latter effectively prolongs the intestinal transport and release of 5-FU, maintaining high drug concentrations at the tumor site. FLSK is found to inhibit tumor growth and significantly extends the survival period of mice. In addition, FLSK promotes anti-tumor immunity and regulation of the gut microbiota. Combining the merits of prebiotics and probiotics, FLSK provides a potential strategy for integrating chemotherapy with gut microbiota regulation therapy for the treatment of CRC.
Collapse
Affiliation(s)
- Xujie Sun
- Lingang Laboratory, Shanghai, 200031, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zongyan He
- Lingang Laboratory, Shanghai, 200031, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixuan Yin
- Lingang Laboratory, Shanghai, 200031, China
| | - Yiran Liu
- Lingang Laboratory, Shanghai, 200031, China
| | - Kaiyue Liu
- Lingang Laboratory, Shanghai, 200031, China
| | - Tian Zhang
- Lingang Laboratory, Shanghai, 200031, China
| | - Ning Yang
- Lingang Laboratory, Shanghai, 200031, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | |
Collapse
|
2
|
Amărandi RM, Marin L, Drăgoi B, Neamţu A. A Coarse-Grained Molecular Dynamics Perspective on the Release of 5-Fluorouracil from Liposomes. Mol Pharm 2024; 21:6137-6152. [PMID: 39515813 PMCID: PMC11615944 DOI: 10.1021/acs.molpharmaceut.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Liposomes, small bilayer phospholipid-containing vesicles, are frequently used to ensure slow drug release for a prolonged and improved therapeutic effect. Nevertheless, current findings on the membrane affinity and permeability of the anticancer agent 5-fluorouracil (5-FU) are confounding, which leads to a lack of a clear understanding of how lipid composition impacts the distribution of 5-FU within liposomal structures and its delivery. In the current work, we report a comprehensive coarse-grained molecular dynamics (CGMD) investigation on the influence of cholesterol (CHOL) and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) on the partitioning of 5-FU in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) double-bilayer systems, as well as its in vitro release from liposomes with identical lipid compositions. Our results show that 5-FU tends to accumulate at the water-lipid interface, in the vicinity of polar headgroups, without partitioning in the hydrophobic tail region. At the same time, the presence of CHOL proportionally increases the distribution of this drug in the interbilayer aqueous space, decreasing the drug's affinity toward the membrane polar head region, while DOTAP has only a slight effect on drug distribution. Thus, it is expected that 5-FU will be released slower from CHOL-containing DPPC liposomes but not DOTAP-containing vesicles. However, in vitro release studies showed that the release kinetics of 5-FU from DPPC vesicles is not influenced by the presence of CHOL and that the incorporation of 10 mol % DOTAP leads to the best release profile for 5-FU, highlighting the complexity of nanocarrier drug release kinetics. We hypothesize that the initial rapid release seen in dialysis experiments is not related to drug membrane permeability but rather to 5-FU adsorbed on the outer surface of liposomes.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot,
Street, Iaşi 700483, Romania
- Department
of Bioinformatics, TRANSCEND Research Center, Regional Institute of
Oncology, 2-4 General
Henri Mathias Berthelot, Street, Iaşi 700483, Romania
| | - Luminiţa Marin
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot,
Street, Iaşi 700483, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Vodă Alley, Iaşi 700487, Romania
| | - Brînduşa Drăgoi
- Nanotechnology
Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot,
Street, Iaşi 700483, Romania
- Faculty
of Chemistry, Alexandru Ioan Cuza University
of Iaşi, 11 Carol
I Boulevard, Iaşi 700506, Romania
| | - Andrei Neamţu
- Department
of Bioinformatics, TRANSCEND Research Center, Regional Institute of
Oncology, 2-4 General
Henri Mathias Berthelot, Street, Iaşi 700483, Romania
- Department
of Physiology, “Grigore T. Popa”
University of Medicine and Pharmacy, 16 Universităţii Street, Iaşi 700115, Romania
| |
Collapse
|
3
|
Lu P, Tsang T, Badowski MS, Pennington ME, Meade‐Tollin LC. Evaluation of the Clinical Safety of the Low-Cost Warburg Therapy for the Treatment of Patients With Advanced Cancers. Cancer Med 2024; 13:e70469. [PMID: 39629677 PMCID: PMC11615646 DOI: 10.1002/cam4.70469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Rising cancer care costs are becoming cost prohibitive for lower income people worldwide. We developed the Warburg protocol as a low-cost option for the treatment of cancer that was inspired. It was developed to exploit an Achilles heel which is a hallmark of cancer cells; the metabolic requirement for higher levels of glucose than normal cells. OBJECTIVE The purpose of this report is to assess the clinical safety and affordability of the Warburg therapy as an option for patients with advanced cancers. METHODS Between 2021 and 2023, 251 patients with advanced cancers received a total of 8542 treatments with the Warburg therapy. To restrict the supply of blood glucose to cancerous tumors, regular human insulin was administered (IV) sufficient to reduce blood glucose concentrations to hypoglycemic levels for 40-60 min. Subroutine doses of fluorouracil and cyclophosphamide were administered intravenously during this hypoglycemic period. Food or intravenous glucose was given as needed to return blood glucose to euglycemic levels after treatment. Patient symptoms, status, vitals, blood glucose, and hypoglycemic symptoms were monitored throughout treatment. Various blood parameters were measured before and after patients' course of treatment. RESULTS There were no irreversible adverse reactions in advanced tumor patients of different ages and different cancer types after treatment. There was no significant fluctuation in blood glucose levels in diabetic and non-diabetic patients after treatment, and the weight, vital index and blood biochemical index of patients before and after multiple treatments exhibited little variation. CONCLUSION Warburg therapy for the treatment of advanced tumors is clinically feasible, and safe for multiple treatments. It is inexpensive and widely applicable to different patient groups.
Collapse
Affiliation(s)
- Peihua Lu
- Department of Hematology and OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
- School of MedicineJiangnan UniversityWuxiChina
| | - Tom Tsang
- American Goodwill Mission to China Inc. 501(c) (3)TucsonArizonaUSA
- Warburg MedicalChongqingChina
| | | | | | - Linda C. Meade‐Tollin
- American Goodwill Mission to China Inc. 501(c) (3)TucsonArizonaUSA
- Department of SurgeryUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
4
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
5
|
Ding H, Liu N, Wang Y, Adam SA, Jin J, Feng W, Sun J. Implications of RNA pseudouridylation for cancer biology and therapeutics: a narrative review. J Transl Med 2024; 22:906. [PMID: 39375731 PMCID: PMC11457414 DOI: 10.1186/s12967-024-05687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pseudouridine (Ψ), a C5-glycoside isomer of uridine, stands as one of the most prevalent RNA modifications in all RNA types. Distinguishing from the C-N bond linking uridine to ribose, the link between Ψ and ribose is a C-C bond, endowing Ψ modified RNA distinct properties and functions in various biological processes. The conversion of uridine to Ψ is governed by pseudouridine synthases (PUSs). RNA pseudouridylation is implicated in cancer biology and therapeutics. OBJECTIVES In this review, we will summarize the methods for detecting Ψ, the process of Ψ generation, the impact of Ψ modification on RNA metabolism and gene expression, the roles of dysregulated Ψ and pseudouridine synthases in cancers, and the underlying mechanism. METHODS We conducted a comprehensive search of PubMed from its inception through February 2024. The search terms included "pseudouridine"; "pseudouridine synthase"; "PUS"; "dyskerin"; "cancer"; "tumor"; "carcinoma"; "malignancy"; "tumorigenesis"; "biomarker"; "prognosis" and "therapy". We included studies published in peer-reviewed journals that focused on Ψ detection, specific mechanisms involving Ψ and PUSs, and prognosis in cancer patients with high Ψ expression. We excluded studies lacking sufficient methodological details or appropriate controls. RESULTS Ψ has been recognized as a significant biomarker in cancer diagnosis and prognosis. Abnormal Ψ modifications mediated by various PUSs result in dysregulated RNA metabolism and impaired RNA function, promoting the development of various cancers. Overexpression of PUSs is common in cancer cells and predicts poor prognosis. PUSs inhibition arrests cell proliferation and enhances apoptosis in cancer cells, suggesting PUS-targeting cancer therapy may be a potential strategy in cancer treatment. DISCUSSION High Ψ levels in serum, urine, and saliva may suggest cancer, but do not specify the type, requiring additional lab markers and imaging for accurate diagnosis. Standardized detection methods are also crucial for reliable results. PUSs are linked to cancer, but more researches are needed to understand their mechanisms in different cancers. Anticancer treatments targeting PUSs are still under developed.
Collapse
Affiliation(s)
- Hanyi Ding
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Na Liu
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Zhang L, Mao Z, Yin K, Wang S. Review of METTL3 in colorectal cancer: From mechanisms to the therapeutic potential. Int J Biol Macromol 2024; 277:134212. [PMID: 39069066 DOI: 10.1016/j.ijbiomac.2024.134212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification in mRNAs, affects the fate of the modified RNAs at the post-transcriptional level and participants in various biological and pathological processes. Increasing evidence shows that m6A modification plays a role in the progression of many malignancies, including colorectal cancer (CRC). As the only catalytic subunit in methyltransferase complex, methyltransferase-like 3 (METTL3) is essential to the performance of m6A modification. It has been found that METTL3 is associated with the prognosis of CRC and significantly influences various aspects of CRC, such as cell proliferation, invasion, migration, metastasis, metabolism, tumor microcirculation, tumor microenvironment, and drug resistance. The relationship between METTL3 and gut-microbiota is also involved into the progression of CRC. Furthermore, METTL3 might be a viable target for CRC treatment to prolong survival. In this review, we comprehensively summarize the function of METTL3 in CRC and the underlying molecular mechanisms. We aim to deepen understanding and offer new ideas for diagnostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Lexuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
7
|
Ji H, He Z, Huang Y, Cao X, Zhu Q. Delivery of 5-fluorouracil for cancer therapy using aptamer-based nonlinear hybridization chain reaction. Int J Pharm 2024; 662:124539. [PMID: 39074647 DOI: 10.1016/j.ijpharm.2024.124539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
5-Fluorouracil (5-FU) is a conventional nucleotide analogue used for cancer treatment. However, its clinical application faces challenges such as low stability and non-specific toxicity. With the remarkable advancements in DNA nanotechnology, DNA-based self-assembled nanocarriers have emerged as powerful tools for delivering nucleotide drugs. In this study, we have designed a non-linear hybrid chain reaction involving a fuel strand with AS1411 aptamer sequence to construct a dendritic structure capable of carrying 5-FU. This structure specifically targets cancer cells with overexpressed nucleolin on their surface, allowing the 5-FU to exert its anticancer effects and achieve therapeutic outcomes. Furthermore, we have also investigated the mechanistic action of this drug delivery system, aiming to establish a novel therapeutic platform for 5-FU treatment.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Ying Huang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
8
|
Turkmen Koc SN, Conger E, Ozturk S, Eroglu I, Ulubayram K. Production of 5-fluorouracil-loaded PLGA nanoparticles with toroidal microfluidic system and optimization of process variables by design of experiments. Int J Pharm 2024; 662:124501. [PMID: 39053677 DOI: 10.1016/j.ijpharm.2024.124501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
In recent decades, microfluidics has presented new opportunities for the production of nanoparticles (NPs). However, to achieve rapid clinical translation, the production of PLGA NPs in a single microfluidic channel for both the pharmaceutical research and industry without the need for scaling is still limited. The aim of this study was to accomplish the production of reproducible and stable 5-FU loaded Poly(lactic-co-glycolic acid) (PLGA) NPs, using an innovative toroidal microfluidic system, for cancer therapy. The toroidal microfluidic system enabled the production of spherical NPs ranging from 100 to 150 nm by adjusting both the TFR within the range of 5-15 mL/min and FRR between 1:3 and 1:7. A systematic assessment of critical process variables (total flow rate; TFR, flow rate ratio; FRR) for the production of PLGA NPs was conducted using Design of Experiment (DoE). The NPs, which exhibit a uniform size distribution, remained stable even after centrifugation and storage for 3 months at 4 °C. The encapsulation efficiency of drug and the concentration of NPs were not affected by changing process parameters. The effective 5-FU encapsulation into NPs resulted in a controlled in vitro drug release. Due to the controlled release profile of the 5-FU loaded PLGA NPs, the formulation was a promising candidate for mitigating the toxic side effects of free 5-FU and improving cancer treatment. In conclusion, toroidal microfluidic system enables high-volume production of stable PLGA NPs, both with and without 5-FU.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Elif Conger
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Ipek Eroglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
9
|
Pourmadadi M, Poorkhalili P, Sorourian M, Sorourian G, Ghaderi R, Mehrabi MG, Ajalli N. The smart nanocarrier containing zein/starch co-biopolymers enhanced by graphitic carbon nitride; exploring opportunities in brain cancer treatment. Int J Biol Macromol 2024; 274:133275. [PMID: 38906350 DOI: 10.1016/j.ijbiomac.2024.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In this investigation, we present an innovative pH-responsive nanocomposite designed to address challenges associated with using 5-Fluorouracil (5-FU) in cancer therapy. The nanocomposite containing zein (Z), starch (S), and graphitic carbon nitride (g-C3N4) macromolecules is synthesized by a water-in-oil-in-water (W/O/W) double emulsion technique, serving as a carrier for 5-FU. The S/Z hydrogel matrix's entrapment and loading efficiency are greatly improved by adding g-C3N4 nanosheets, reaching noteworthy values of 45.25 % and 86.5 %, respectively, for drug loading efficiency and entrapment efficiency. Characterization through FTIR and XRD validates the successful loading of 5-FU, elucidating the chemical bonding within the nanocomposite and crystalline characteristics. Structural analysis using FESEM, along with DLS and zeta potential measurements, reveals an average nanocomposite size of 193.48 nm, indicating a controlled structure, and a zeta potential of -42.32 mV, signifying a negatively charged surface. Studies on the in vitro release of drugs reveal that 5-FU is delivered more effectively and sustainably in acidic environments than in physiological circumstances. This highlights the fact that the created nanocarrier is pH-sensitive. Modeling release kinetics involves finding the right mathematical conditions representing underlying physicochemical processes. Employing curve-fitting techniques, predominant release mechanisms are identified, and optimal-fitting kinetic models are determined. The Baker kinetic model performed best at pH 7.4, indicating that the leading cause of the drug release was polymer swelling. In contrast, the Higuchi model was most accurate for drug release at pH 5.4, illuminating the diffusion and dissolution mechanisms involved in diffusion. To be more precise, the mechanism of release at pH 7.4 and 5.4 was anomalous transport (dissolution-controlled), according to the Korsmeyer-Peppas mathematical model. The pH-dependent swelling and degradation behavior of S/Z/g-C3N4@5-FU nanocomposite showed higher swelling and faster degradation in acidic environments compared to neutral conditions. Crucially, outcomes from the MTT test affirm the significant cytotoxicity of the 5-FU-loaded nanocomposite against U-87 MG brain cancer cells, while simultaneously indicating non-toxicity towards L929 fibroblast cells. These cumulative findings underscore the potential of the engineered S/Z/g-C3N4@5-FU as a productive and targeted therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran.
| | - Pegah Poorkhalili
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Maral Sorourian
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Ghazal Sorourian
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Reza Ghaderi
- Department of Biomedical Engineering, Faculty of Engineering, University of Shomal, Amol, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran.
| |
Collapse
|
10
|
Halder S, Behera US, Poddar S, Khanam J, Karmakar S. Preparation of Microsponge Drug Delivery System (MSDDS) Followed by a Scale-Up Approach. AAPS PharmSciTech 2024; 25:162. [PMID: 38997615 DOI: 10.1208/s12249-024-02874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 μm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.
Collapse
Affiliation(s)
- S Halder
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - U S Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Jeonnam, Yeosu, 59626, South Korea
| | - S Poddar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
- Department of Chemical Engineering, Haldia Institute of Technology, West Bengal, 721657, India.
| | - J Khanam
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - S Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
11
|
Zhang N, Zang L. MiR-22-3p Inhibits 5-Fluorouracil Resistance in Cholangiocarcinoma Cells Through PTEN/PI3K/AKT Axis. Assay Drug Dev Technol 2024; 22:217-228. [PMID: 38967602 DOI: 10.1089/adt.2024.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a prevalent and highly lethal form of cancer globally. Although microRNAs (miRNAs) have been implicated in the advancement of CCA, their potential influence on 5-fluorouracil (5-Fu) resistance in CCA remains to be fully elucidated. Here, in this study, we investigated the impact of miR-22-3p on CCA resistance. Our investigation involved bioinformatics analysis, which revealed an association between miR-22-3p and the progression, diagnosis, and patient survival of CCA. Furthermore, we validated a notable downregulation of miR-22-3p expression in CCA cell lines. Elevated levels of miR-22-3p inhibit the activity and proliferation of 5-Fu-resistant CCA cell lines. In addition, we confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a target gene of miR-22-3p, and its expression correlates with the survival of CCA patients. Reduced PTEN expression enhances apoptosis in 5-Fu-resistant CCA cells. Meanwhile, we verified the existence of the miR-22-3p/PTEN/phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (AKT) regulatory networks in CCA, influencing the sensitivity of CCA cells to 5-Fu. In conclusion, our findings suggest that miR-22-3p acts as a tumor suppressor. Its overexpression inhibits the PTEN/PI3K/AKT axis, promoting cell apoptosis and enhancing CCA sensitivity to 5-Fu.
Collapse
Affiliation(s)
- Ningrong Zhang
- Department of Pharmacy, Ningbo Haishu People's Hospital, Ningbo, Republic of China
| | - Li Zang
- Department of Pharmacy, Ningbo Haishu People's Hospital, Ningbo, Republic of China
| |
Collapse
|
12
|
Chamorro Cañon JD, Luna MA, Sabini MC, Molina PG, Correa NM. Electrochemical Characterization of the Encapsulation and Release of 5-Fluorouracil in Nanocarriers Formed from Soy Lecithin Vesicles. J Phys Chem B 2024; 128:5427-5436. [PMID: 38808516 DOI: 10.1021/acs.jpcb.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
5-Fluorouracil (5-FU) is an antineoplastic agent known for its low bioavailability and limited cellular penetration, often resulting in adverse effects on healthy cells. Thus, finding vehicles that enhance bioavailability, enable controlled release, and mitigate adverse effects is crucial. The study focuses on encapsulating 5-FU within soy lecithin vesicles (SLVs) and assessing its impact on the carrier's properties and functionality. Results show that incorporating 5-FU does not affect SLVs' size or polydispersity, even postlyophilization. Liberation of 5-FU from SLVs requires system disruption rather than spontaneous release, with an encapsulation efficiency of approximately 43% determined using Square Wave Voltammetry. Cytotoxicity assays on colorectal cancer cells reveal SLV-based delivery's significant efficacy, surpassing free drug solution effects with 45% cell viability after 72 h vs 73% viability. The research addresses 5-FU's limited bioavailability by creating a biocompatible nanocarrier for efficient drug delivery, highlighting SLVs as promising for targeted cancer therapy due to sustained antiproliferative effects and improved cellular uptake. The study underscores the importance of tailored drug delivery systems in enhancing therapeutic outcomes and suggests SLV/5-FU formulations as a potential advancement in cancer treatment strategies.
Collapse
Affiliation(s)
- J David Chamorro Cañon
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - M Alejandra Luna
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - M Carola Sabini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Blvd de la Reforma and Enfermera Gordillo Gómez, C.P. X5016 Córdoba, Argentina
| | - Patricia G Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET-UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| |
Collapse
|
13
|
Liang R, Li P, Yang N, Xiao X, Gong J, Zhang X, Bai Y, Chen Y, Xie Z, Liao Q. Parabacteroides distasonis-Derived Outer Membrane Vesicles Enhance Antitumor Immunity Against Colon Tumors by Modulating CXCL10 and CD8 + T Cells. Drug Des Devel Ther 2024; 18:1833-1853. [PMID: 38828018 PMCID: PMC11144014 DOI: 10.2147/dddt.s457338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.
Collapse
Affiliation(s)
- Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yunuan Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
14
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
15
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
16
|
Xu X, Gao S, Zuo Q, Gong J, Song X, Liu Y, Xiao J, Zhai X, Sun H, Zhang M, Gao X, Guo D. Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery. Pharmaceutics 2024; 16:601. [PMID: 38794264 PMCID: PMC11125651 DOI: 10.3390/pharmaceutics16050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.
Collapse
Affiliation(s)
- Xiaolin Xu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shasha Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qindan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yongshi Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jing Xiao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaofeng Zhai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
17
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
18
|
Fahmy SA, Mahdy NK, Mohamed AH, Mokhtar FA, Youness RA. Hijacking 5-Fluorouracil Chemoresistance in Triple Negative Breast Cancer via microRNAs-Loaded Chitosan Nanoparticles. Int J Mol Sci 2024; 25:2070. [PMID: 38396746 PMCID: PMC10889139 DOI: 10.3390/ijms25042070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Chemotherapy is still the mainstay of treatment for triple-negative breast cancer (TNBC) patients. Yet only 20% of TNBC patients show a pathologic complete response (pCR) after neoadjuvant chemotherapy. 5-Fluorouracil (5-FU) is a stable cornerstone in all recommended chemotherapeutic protocols for TNBC patients. However, TNBC patients' innate or acquired chemoresistance rate for 5-FU is steeply escalating. This study aims to unravel the mechanism behind the chemoresistance of 5-FU in the aggressive TNBC cell line, MDA-MB-231 cells, to explore further the role of the tumor suppressor microRNAs (miRNAs), miR-1275, miR-615-5p, and Let-7i, in relieving the 5-FU chemoresistance in TNBC, and to finally provide a translational therapeutic approach to co-deliver 5-FU and the respective miRNA oligonucleotides using chitosan-based nanoparticles (CsNPs). In this regard, cellular viability and proliferation were investigated using MTT and BrdU assays, respectively. 5-FU was found to induce JAK/STAT and PI3K/Akt/mTOR pathways in MDA-MB-231 cells with contaminant repression of their upstream regulators miR-1275, miR-615-5p, and Let-7i. Moreover, CsNPs prepared using the ionic gelation method were chosen and studied as nanovectors of 5-FU and a combination of miRNA oligonucleotides targeting TNBC. The average particle sizes, surface charges, and morphologies of the different CsNPs were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. In addition, the encapsulation efficiency (EE%), drug loading capacity (DLC%), and release manner at two different pH values were assessed. In conclusion, the novel CsNPs co-loaded with 5-FU and the combination of the three miRNA oligonucleotides demonstrated synergistic activity and remarkable repression in cellular viability and proliferation of TNBC cells through alleviating the chemoresistance to 5-FU.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Adham H Mohamed
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma A Mokhtar
- Fujairah Research Centre, Sakamkam Road, Fujairah 1626, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| |
Collapse
|
19
|
Li L, Zhang Y, Zhan Y, Zhong Y, Li X. LINC00467 mediates the 5-fluorouracil resistance in breast cancer cells. In Vitro Cell Dev Biol Anim 2024; 60:80-88. [PMID: 38127229 DOI: 10.1007/s11626-023-00832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Breast cancer is a prevalent global disease that requires the development of effective therapeutic approaches. The occurrence of 5-fluorouracil (5-FU) resistance in breast cancer is emerging, which urgently needs new way to overcome the obstacle. In this study, we validated that the expression of LINC00467 is up-regulated in the breast cancer patients and breast cancer cells. In addition, the high expression of LINC00467 is associated with the 5-FU resistance of breast cancer cells. Interestingly, LINC00467 induced the homologous recombination (HR) repair via promoting the expression of NBS1 in 5-FU resistant breast cancer cells. Furthermore, miR-205 was validated as a common target of LINC00467 and NBS1, indicating that LINC00467 may induce NBS1 via the miRNA-mRNA target. Importantly, we identified that XBP1, as a transcription factor, induced the expression of LINC00467, which resulted in the enhanced HR efficiency and 5-FU resistance. Silencing XBP1 sensitized the 5-FU resistant breast cancer cells to the 5-FU treatment, whereas the ectopic expression of LINC00467 abrogated the effect of XBP1 silencing. In conclusion, LINC00467 enhances the 5-FU resistance by inducing NBS1-mediated DNA repair. LINC00467 also mediates the function of XBP1 in 5-FU resistance in breast cancer cells.
Collapse
Affiliation(s)
- Lan Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Taping Rd. No.25, Luzhou, China
| | - Yan Zhang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Taping Rd. No.25, Luzhou, China
| | - Yuwei Zhan
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Taping Rd. No.25, Luzhou, China
| | - Yuanke Zhong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Taping Rd. No.25, Luzhou, China
| | - Xuehong Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Taping Rd. No.25, Luzhou, China.
| |
Collapse
|
20
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
21
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
22
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
Kaźmierczak-Siedlecka K, Bulman N, Ulasiński P, Sobocki BK, Połom K, Marano L, Kalinowski L, Skonieczna-Żydecka K. Pharmacomicrobiomics of cell-cycle specific anti-cancer drugs - is it a new perspective for personalized treatment of cancer patients? Gut Microbes 2023; 15:2281017. [PMID: 37985748 PMCID: PMC10730203 DOI: 10.1080/19490976.2023.2281017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Intestinal bacteria are equipped with an enzyme apparatus that is involved in the active biotransformation of xenobiotics, including drugs. Pharmacomicrobiomics, a new area of pharmacology, analyses interactions between bacteria and xenobiotics. However, there is another side to the coin. Pharmacotherapeutic agents can significantly modify the microbiota, which consequently affects their efficacy. In this review, we comprehensively gathered scientific evidence on the interplay between anticancer therapies and gut microbes. We also underlined how such interactions might impact the host response to a given therapy. We discuss the possibility of modulating the gut microbiota to increase the effectiveness/decrease the incidence of adverse events during tumor therapy. The anticipation of the future brings new evidence that gut microbiota is a target of interest to increase the efficacy of therapy.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Nikola Bulman
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Paweł Ulasiński
- Unit of Surgery with Unit of Oncological Surgery in Koscierzyna, Kościerzyna, Poland
| | - Bartosz Kamil Sobocki
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland
| | - Karol Połom
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Luigi Marano
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
24
|
Marlina A, Misran M. Physicochemical Properties and Release Study of Antimetabolite-Incorporated Stearoyl Chitosan. ACS OMEGA 2023; 8:40494-40507. [PMID: 37929136 PMCID: PMC10620914 DOI: 10.1021/acsomega.3c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Stearoyl chitosan (SC), derived from the acylation of chitosan, contributes to the efficiency of drug delivery systems because of its structure, which accommodates the drug in a particle. Nonetheless, its role in chemotherapy has been largely unexplored. The present study involves the synthesis of stearoyl chitosan through the reaction of depolymerized chitosan with stearoyl chloride under mild reaction conditions. The resulting compound was subjected to structural analysis utilizing Fourier-transform infrared (FTIR) spectroscopy, 1H NMR, and X-ray diffraction (XRD) spectroscopy. The dispersion of SC molecules in phosphate-buffered saline (PBS) forms SC nanoparticles. The best dispersion of SC in the solution was achieved at a 1:60 chitosan-to-stearoyl chloride weight ratio. Three antimetabolite drugs, methotrexate, pemetrexed, and raltitrexed, were selected to examine the loading efficacy of SC. Pemetrexed had the highest drug-loading value of 36.8% among the three antimetabolites incorporated into SC, along with an encapsulation efficiency of 85.1%. The size of SC loaded with antimetabolites ranged from 225 to 369 nm, and their spherical form was verified via a transmission electron microscope. The in vitro release study showed that SC demonstrated controlled drug release, suggesting that SC nanoparticles have significant promise as a delivery strategy for chemotherapy.
Collapse
Affiliation(s)
- Anita Marlina
- Research
Centre for Chemistry, National Research
and Innovation Agency Republic of Indonesia, South Tangerang 15314, Indonesia
- Department
of Chemistry, Faculty of Science, University
of Malaya, Kuala
Lumpur, 50603, Malaysia
| | - Misni Misran
- Department
of Chemistry, Faculty of Science, University
of Malaya, Kuala
Lumpur, 50603, Malaysia
| |
Collapse
|
25
|
Das S, Saha M, Mahata LC, China A, Chatterjee N, Das Saha K. Quercetin and 5-Fu Loaded Chitosan Nanoparticles Trigger Cell-Cycle Arrest and Induce Apoptosis in HCT116 Cells via Modulation of the p53/p21 Axis. ACS OMEGA 2023; 8:36893-36905. [PMID: 37841142 PMCID: PMC10569019 DOI: 10.1021/acsomega.3c03933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Nanoparticles (NPs) are encapsulating agents that exist in the nanometer range. They can be classified into different classes based on their properties, shapes, or sizes. Metal NPs, fullerenes, polymeric NPs, ceramic NPs, and luminescent nanoporous hybrid materials are only a few examples. This study explored the anticancer potential of quercetin and 5-fluorouracil-encapsulated chitosan nanoparticles (CS-5-FU-QCT NPs). The nanoparticles were prepared by ionic gelation, and their efficacy and mechanism of action were examined. CS-5-FU-QCT NPs were characterized using dynamic light scattering (DLS), atomic force microscopy (AFM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR); cytotoxicity was analyzed using an MTT assay. Cells were treated with CS-5-FU-QCT NPs and incubated for 12, 24, and 36 h, and apoptosis analysis (using Annexin V/FITC), cell-cycle analysis, Western blotting, and confocal microscopic analysis were performed. Biophysical analysis revealed that the CS-5-FU-QCT NPs fall in the range of 300-400 nm with a near-spherical shape. The in vitro drug release profile indicates sustained release of drugs over a period of about 36 h. The cytotoxicity of CS-5-FU-QCT NPs was more prominent in HCT116 cells than in other cancer cells. This particular nanoformulation caused G0/G1 phase cell-cycle arrest in HCT116 cells and induced intracellular ROS generation, thereby causing apoptosis. It also downregulated Bcl2, cyclin D1, and Cdk4 and upregulated BAX, p53, and p21, causing cell-cycle arrest and apoptosis. In summary, CS-5-FU-QCT NPs hindered proliferation of HCT116 cells via ROS generation and altered the expression of key proteins in the p53/p21 axis and apoptotic machinery in a time-dependent manner.
Collapse
Affiliation(s)
- Sanjib Das
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Moumita Saha
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | - Lokesh Chandra Mahata
- Department
of Pharmaceutical Technology, Maulana Abul
Kalam Azad University of Technology, Haringhata, Nadia 741249, West Bengal, India
| | - Arya China
- Department
of Pharmaceutical Technology, Maulana Abul
Kalam Azad University of Technology, Haringhata, Nadia 741249, West Bengal, India
| | - Niloy Chatterjee
- Laboratory
of Food Science and Technology, Food and Nutrition, University of Calcutta, 20B, Judges Court Road, Kolkata 700027, West Bengal, India
- Centre
for Research in Nanoscience & Nanotechnology, University of Calcutta, JD-2, Sector-III, Salt Lake City, Kolkata 700098, West Bengal, India
| | - Krishna Das Saha
- Cancer
Biology and Inflammatory Disorder Division, CSIR- Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
26
|
Silveira MJ, Martins C, Cruz T, Castro F, Amorim-Costa Â, Chester K, Oliveira MJ, Sarmento B. scFv biofunctionalized nanoparticles to effective and safe targeting of CEA-expressing colorectal cancer cells. J Nanobiotechnology 2023; 21:357. [PMID: 37784150 PMCID: PMC10544461 DOI: 10.1186/s12951-023-02126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers worldwide, with the 5 year survival rate in metastatic cases limited to 12%. The design of targeted and effective therapeutics remains a major unmet clinical need in CRC treatment. Carcinoembryonic antigen (CEA), a glycoprotein overexpressed in most colorectal tumors, may constitute a promising molecule for generating novel CEA-targeted therapeutic strategies for CRC treatment. Here, we developed a smart nanoplatform based on chemical conjugation of an anti-CEA single-chain variable fragment (scFv), MFE-23, with PLGA-PEG polymers to deliver the standard 5-Fluorouracil (5-FU) chemotherapy to CRC cells. We confirmed the specificity of the developed CEA-targeted NPs on the internalization by CEA-expressing CRC cells, with an enhance of threefold in the cell uptake. Additionally, CEA-targeted NPs loaded with 5-FU induced higher cytotoxicity in CEA-expressing cells, after 24 h and 48 h of treatment, reinforcing the specificity of the targeted NPs. Lastly, the safety of CEA-targeted NPs loaded with 5-FU was evaluated in donor-isolated macrophages, with no relevant impact on their metabolic activity nor polarization. Altogether, this proof of concept supports the CEA-mediated internalization of targeted NPs as a promising chemotherapeutic strategy for further investigation in different CEA-associated cancers and respective metastatic sites.Authors: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Maria José] Last name [Silveira]. Author 7 Given name: [Maria José] Last name [Oliveira]. Also, kindly confirm the details in the metadata are correctokAffiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.ok.
Collapse
Affiliation(s)
- Maria José Silveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Tânia Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Ângela Amorim-Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Kerry Chester
- UCL - University College London Cancer Institute, London, UK
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- FMUP - Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IUCS-CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
27
|
Omrani Z, Pourmadadi M, Yazdian F, Rashedi H. Preparation and characterization of pH-sensitive chitosan/starch/MoS 2 nanocomposite for control release of curcumin macromolecules drug delivery; application in the breast cancer treatment. Int J Biol Macromol 2023; 250:125897. [PMID: 37481179 DOI: 10.1016/j.ijbiomac.2023.125897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.
Collapse
Affiliation(s)
- Zahra Omrani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
28
|
Ren X, Su D, Shi D, Xiang X. The improving strategies and applications of nanotechnology-based drugs in hepatocellular carcinoma treatment. Front Bioeng Biotechnol 2023; 11:1272850. [PMID: 37811369 PMCID: PMC10557528 DOI: 10.3389/fbioe.2023.1272850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-related death worldwide. Conventional treatments for HCC include drugs, radiation, and surgery. Despite the unremitting efforts of researchers, the curative effect of HCC has been greatly improved, but because HCC is often found in the middle and late stages, the curative effect is still not satisfactory, and the 5-year survival rate is still low. Nanomedicine is a potential subject, which has been applied to the treatment of HCC and has achieved promising results. Here, we summarized the factors affecting the efficacy of drugs in HCC treatment and the strategies for improving the efficacy of nanotechnology-based drugs in HCC, reviewed the recent applications' progress on nanotechnology-based drugs in HCC treatment, and discussed the future perspectives and challenges of nanotechnology-based drugs in HCC treatment.
Collapse
Affiliation(s)
- Xiangyang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- The Ninth Hospital of Xi’an, Xi’an, Shaanxi, China
| | - Xiaohong Xiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Voycheva C, Slavkova M, Popova T, Tzankova D, Stefanova D, Tzankova V, Ivanova I, Tzankov S, Spassova I, Kovacheva D, Tzankov B. Thermosensitive Hydrogel-Functionalized Mesoporous Silica Nanoparticles for Parenteral Application of Chemotherapeutics. Gels 2023; 9:769. [PMID: 37754450 PMCID: PMC10530711 DOI: 10.3390/gels9090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels can offer many opportunities for drug delivery strategies. They can be used on their own, or their benefits can be further exploited in combination with other nanocarriers. Intelligent hydrogels that react to changes in the surrounding environment can be utilized as gatekeepers and provide sustained on-demand drug release. In this study, a hybrid nanosystem for temperature- and pH-sensitive delivery was prepared from MCM-41 nanoparticles grafted with a newly synthesized thermosensitive hydrogel (MCM-41/AA-g-PnVCL). The initial particles were chemically modified by the attachment of carboxyl groups. Later, they were grafted with agar (AA) and vinylcaprolactam (VCL) by free radical polymerization. Doxorubicin was applied as a model hydrophilic chemotherapeutic drug. The successful formulation was confirmed by FT-IR and TGA. Transmission electron microscopy and dynamic light scattering analysis showed small particles with negative zeta potential. Their release behaviour was investigated in vitro in media with different pH and at different temperatures. Under tumour simulating conditions (40 °C and pH 4.0), doxorubicin was almost completely released within 72 h. The biocompatibility of the proposed nanoparticles was demonstrated by in vitro haemolysis assay. These results suggest the possible parenteral application of the newly prepared hydrogel-functionalized mesoporous silica nanoparticles for temperature-sensitive and pH-triggered drug delivery at the tumour site.
Collapse
Affiliation(s)
- Christina Voycheva
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Marta Slavkova
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Teodora Popova
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria;
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (D.S.); (V.T.)
| | - Ivelina Ivanova
- Faculty of Pharmacy, Medical University—Pleven, 5800 Pleven, Bulgaria; (I.I.); (S.T.)
| | - Stanislav Tzankov
- Faculty of Pharmacy, Medical University—Pleven, 5800 Pleven, Bulgaria; (I.I.); (S.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Borislav Tzankov
- Department Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria; (C.V.); (T.P.); (B.T.)
| |
Collapse
|
30
|
Akbar MU, Khattak S, Khan MI, Saddozai UAK, Ali N, AlAsmari AF, Zaheer M, Badar M. A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-Fluorouracil. Front Pharmacol 2023; 14:1265440. [PMID: 37745070 PMCID: PMC10517339 DOI: 10.3389/fphar.2023.1265440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer has remained one of the leading causes of death worldwide, with a lack of effective treatment. The intrinsic shortcomings of conventional therapeutics regarding tumor specificity and non-specific toxicity prompt us to look for alternative therapeutics to mitigate these limitations. In this regard, we developed multifunctional bimetallic (FeCo) bi-MIL-88B-FC MOFs modified with folic acid-conjugated chitosan (FC) as drug delivery systems (DDS) for targeted delivery of 5-Fluorouracil (5-FU). The bi-MIL-88B nanocarriers were characterized through various techniques, including powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Interestingly, 5-FU@bi-MIL-88B-FC showed slower release of 5-FU due to a gated effect phenomenon endowed by FC surface coating compared to un-modified 5-FU@bi-MIL-88B. The pH-responsive drug release was observed, with 58% of the loaded 5-FU released in cancer cells mimicking pH (5.2) compared to only 24.9% released under physiological pH (5.4). The in vitro cytotoxicity and cellular internalization experiments revealed the superiority of 5-FU@bi-MIL-88B-FC as a highly potent targeted DDS against folate receptor (FR) positive SW480 cancer cells. Moreover, due to the presence of Fe and Co in the structure, bi-MIL-88B exhibited peroxidase-like activity for chemodynamic therapy. Based on the results, 5-FU@bi-MIL-88B-FC could serve as promising candidate for smart DDS by sustained drug release and selective targeting.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Malik Ihsanullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
31
|
Chen X, He H, Guo X, Hou M, Zhang X, Li S, Wang C, Zhao G, Li W, Zhang X, Hong W. Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer. Mol Pharm 2023; 20:3914-3924. [PMID: 37384449 DOI: 10.1021/acs.molpharmaceut.3c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The "proton expansion" effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Huayu He
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinyu Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinzhong Zhang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Guodong Zhao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiuping Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
32
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
33
|
Verkhovskii RA, Ivanov AN, Lengert EV, Tulyakova KA, Shilyagina NY, Ermakov AV. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051566. [PMID: 37242807 DOI: 10.3390/pharmaceutics15051566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.
Collapse
Affiliation(s)
- Roman A Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Ksenia A Tulyakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
34
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana, 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - V Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan (ROC).
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
35
|
Pourmadadi M, Ghaemi A, Shaghaghi M, Rahdar A, Pandey S. Cabazitaxel-nano delivery systems as a cutting-edge for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
36
|
Shibata T, Narita T, Suto Y, Yasmin H, Kabashima T. A Facile Fluorometric Assay of Orotate Phosphoribosyltransferase Activity Using a Selective Fluorogenic Reaction for Orotic Acid. SENSORS (BASEL, SWITZERLAND) 2023; 23:2507. [PMID: 36904710 PMCID: PMC10007123 DOI: 10.3390/s23052507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Orotate phosphoribosyltransferase (OPRT) exists as a bifunctional enzyme, uridine 5'-monophosphate synthase, in mammalian cells and plays an important role in pyrimidine biosynthesis. Measuring OPRT activity has been considered important for understanding biological events and development of molecular-targeting drugs. In this study, we demonstrate a novel fluorescence method for measuring OPRT activity in living cells. The technique utilizes 4-trifluoromethylbenzamidoxime (4-TFMBAO) as a fluorogenic reagent, which produces selective fluorescence for orotic acid. To perform the OPRT reaction, orotic acid was added to HeLa cell lysate, and a portion of the enzyme reaction mixture was heated at 80 °C for 4 min in the presence of 4-TFMBAO under basic conditions. The resulting fluorescence was measured using a spectrofluorometer, which reflects the consumption of orotic acid by the OPRT. After optimization of the reaction conditions, the OPRT activity was successfully determined in 15 min of enzyme reaction time without further procedures such as purification of OPRT or deproteination for the analysis. The activity obtained was compatible with the value measured by the radiometric method with [3H]-5-FU as the substrate. The present method provides a reliable and facile measurement of OPRT activity and could be useful for a variety of research fields targeting pyrimidine metabolism.
Collapse
Affiliation(s)
- Takayuki Shibata
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi 371-8514, Japan
| | - Tomohiro Narita
- Department of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yutaka Suto
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaoruimachi, Takasaki 370-0033, Japan
| | - Hasina Yasmin
- Department of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Tsutomu Kabashima
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| |
Collapse
|