1
|
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, Bojarska J, Ziora ZM. Tetrazoles: A multi-potent motif in drug design. Eur J Med Chem 2024; 279:116870. [PMID: 39316842 DOI: 10.1016/j.ejmech.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Muzi Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; Institute for Health and Sport, Immunology and Translational Research, Victoria University, Werribee, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| | - John Matsoukas
- New Drug, Patras Science Park, 26500 Patras, Greece; Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, AB, T2N 4N1, Canada
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland.
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Arzine A, Hadni H, Boujdi K, Chebbac K, Barghady N, Rhazi Y, Chalkha M, Nakkabi A, Chkirate K, Mague JT, Kawsar SMA, Al Houari G, M. Alanazi M, El Yazidi M. Efficient Synthesis, Structural Characterization, Antibacterial Assessment, ADME-Tox Analysis, Molecular Docking and Molecular Dynamics Simulations of New Functionalized Isoxazoles. Molecules 2024; 29:3366. [PMID: 39064944 PMCID: PMC11279828 DOI: 10.3390/molecules29143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Khalid Boujdi
- Faculty of Sciences and Technologies Mohammedia, University Hassan II, B.P. 146, Mohammedia 28800, Morocco;
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco;
| | - Najoua Barghady
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10010, Morocco;
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| |
Collapse
|
3
|
Ganeshkumar A, Muthuselvam M, de Lima PMN, Rajaram R, Junqueira JC. Current Perspectives of Antifungal Therapy: A Special Focus on Candida auris. J Fungi (Basel) 2024; 10:408. [PMID: 38921394 PMCID: PMC11205254 DOI: 10.3390/jof10060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Chennai 602105, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Patricia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| | - Rajendren Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| |
Collapse
|
4
|
Ni T, Hao Y, Ding Z, Chi X, Xie F, Wang R, Bao J, Yan L, Li L, Wang T, Zhang D, Jiang Y. Discovery of a Novel Potent Tetrazole Antifungal Candidate with High Selectivity and Broad Spectrum. J Med Chem 2024; 67:6238-6252. [PMID: 38598688 DOI: 10.1021/acs.jmedchem.3c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 μg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Zichao Ding
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
- Department of Pharmacy, 927th Hospital of Joint Logistics Support Force, 3 Yushui Road ,Puer 665000, China
| | - Xiaochen Chi
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Ruina Wang
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
| | - Ting Wang
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
| |
Collapse
|
5
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Bhoye MR, Shinde A, Shaikh ALN, Shisode V, Chavan A, Maliwal D, Pissurlenkar RRS, Mhaske PC. New thiazolyl-isoxazole derivatives as potential anti-infective agents: design, synthesis, in vitro and in silico antimicrobial efficacy. J Biomol Struct Dyn 2024:1-15. [PMID: 38258445 DOI: 10.1080/07391102.2024.2306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Antimicrobial resistance threatens the efficacious prevention and treatment of infectious diseases caused by microorganisms. To combat microbial infections, the need for new drug candidates is essential. In this context, the design, synthesis, antimicrobial screening, and in silico study of a new series of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) have been reported. The structure of new compounds was confirmed by spectrometric methods. Compounds 9a-t were evaluated for in vitro antitubercular and antimicrobial activity. Against M. tuberculosis H37Rv, fourteen compounds showed good to excellent antitubercular activity with MIC 2.01-9.80 µM. Compounds 9a, 9b, and 9r showed four-fold more activity than the reference drug isoniazid. Nine compounds, 9a, 9b, 9d, 9e, 9i, 9q, 9r, 9s, and 9t, showed good antibacterial activity against E. coli with MIC 7.8-15.62 µg/mL. Against A. niger, four compounds showed good activity with MIC 31.25 µg/mL. Against C. albicans, all twenty compounds reported excellent to good activity with MIC 7.8-31.25 µg/mL. Compounds 9c-e, 9g-j, and 9q-t showed comparable activity concerning the reference drug fluconazole. The compounds 9a-t were screened for cytotoxicity against 3t3l1 cell lines and found to be less or non-cytotoxic. The in silico study exposed that these compounds displayed high affinity towards the M. tuberculosis targets PanK, DprE1, DHFR, PknA, KasA, and Pks13, and C. albicans targets NMT, CYP51, and CS. The compound 9r was evaluated for structural dynamics and molecular dynamics simulations. The potent antitubercular and antimicrobial activity of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) derivatives has recommended that these compounds could assist in treating microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish R Bhoye
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, S.N Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, India
| | - Abhijit Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abdul Latif N Shaikh
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, India
| | - Vilas Shisode
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abhijit Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| |
Collapse
|
7
|
Kanchrana M, Gamidi RK, Kumari J, Sriram D, Basavoju S. Design, synthesis, anti-mycobacterial activity, molecular docking and ADME analysis of spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition reaction under ultrasound irradiation. Mol Divers 2024:10.1007/s11030-023-10790-9. [PMID: 38261121 DOI: 10.1007/s11030-023-10790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.
Collapse
Affiliation(s)
- Madhu Kanchrana
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India.
| |
Collapse
|
8
|
Osmaniye D, Baltacı Bozkurt N, Levent S, Benli Yardımcı G, Sağlık BN, Ozkay Y, Kaplancıklı ZA. Synthesis, Antifungal Activities, Molecular Docking and Molecular Dynamic Studies of Novel Quinoxaline-Triazole Compounds. ACS OMEGA 2023; 8:24573-24585. [PMID: 37457491 PMCID: PMC10339406 DOI: 10.1021/acsomega.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Uncontrolled use of antifungal drugs affects the development of resistance to existing drugs. Azole antifungals constitute a large part of antifungal therapy. Therefore, there is a need for new azole antifungals. Within the scope of this study, 17 new triazole derivative compounds were synthesized. Structure determinations were clarified by spectroscopic analysis methods (1H-NMR, 13C-NMR, HRMS). In addition, structure matching was completed using two-dimensional NMR techniques, HSQC, HMBC and NOESY. The antifungal effects of the compounds were evaluated on Candida strains by means of in vitro method. Compound 5d showed activity against Candida glabrata with a MIC90 = 2 μg/mL. Compound 5d showed activity against Candida krusei with a MIC90 = 2 μg/mL. This activity value, which is higher than fluconazole, is promising. In addition, the biofilm inhibition percentages of the compounds were calculated. Molecular docking and molecular dynamics simulations performed with compound 5d are in harmony with activity studies.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Nurnehir Baltacı Bozkurt
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gamze Benli Yardımcı
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yusuf Ozkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
9
|
Xie F, Hao Y, Li L, Wang R, Bao J, Chi X, Monk BC, Wang T, Yu S, Jin Y, Zhang D, Ni T, Yan L. Novel antifungal triazoles with alkynyl-methoxyl side chains: Design, synthesis, and biological activity evaluation. Eur J Med Chem 2023; 257:115506. [PMID: 37216811 DOI: 10.1016/j.ejmech.2023.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 μg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 μg/mL of 16, 18, and 29 was more effective than 2 μg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 μg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 μg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.
Collapse
Affiliation(s)
- Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai, 200072, China.
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
10
|
Chi X, Zhang H, Wu H, Li X, Li L, Jiang Y, Ni T. Discovery of Novel Tetrazoles Featuring a Pyrazole Moiety as Potent and Highly Selective Antifungal Agents. ACS OMEGA 2023; 8:17103-17115. [PMID: 37214706 PMCID: PMC10193422 DOI: 10.1021/acsomega.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
In pursuit of developing novel azole antifungals with potent activity and high selectivity, a series of (2R,3S)-3-(substituted-1H-pyrazol-3-yl)-2-(2,4-difluorophenyl)-1-(1H-tetrazol-1-yl)butan-2-ol derivatives were designed and synthesized based on our previous work. All compounds exhibited excellent in vitro antifungal activities against Candida spp. and Cryptococcus neoformans H99 with minimum inhibitory concentration values ranging from <0.008 to 4 μg/mL, with some even showing moderate activity against Aspergillus fumigatus 7544. The most active compounds (8, 11, 15, 24, and 25) displayed outstanding antifungal activity against six fluconazole-resistant C. auris clinical isolates and showed a potent inhibitory effect on biofilm formation of C. albicans SC5314 and C. neoformans H99. In addition, compounds 11 and 15 showed no inhibition of human CYP1A2 and low inhibitory activity against CYP3A4, indicating minimal risk of drug-drug interactions. Taken together, these promising tetrazoles with high in vitro potency and good safety profiles warrant further investigation.
Collapse
Affiliation(s)
- Xiaochen Chi
- Department
of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200092, China
- School
of Chinese Materia Medica, Shenyang Pharmaceutical
University, Shenyang 110016, China
| | - Haonan Zhang
- Department
of General Surgery, General Hospital of
Ningxia Medical University, No. 688 Shengli Street, Yinchuan City, Ningxia Hui Autonomous Region 750004, China
| | - Hao Wu
- Department
of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Xianru Li
- Department
of Pharmacy, Shanghai University of Medicine
& Health Sciences, No.258 Tianxiong Road, Shanghai 201318, China
| | - Liping Li
- Department
of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Yuanying Jiang
- Department
of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Tingjunhong Ni
- Department
of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Chi X, Xie F, Li L, Hao Y, Wu H, Li X, Xia G, Yan L, Zhang D, Jiang Y, Ni T. Discovery of novel triazoles containing benzyloxy phenyl isoxazole side chain with potent and broad-spectrum antifungal activity. Bioorg Chem 2023; 137:106572. [PMID: 37156136 DOI: 10.1016/j.bioorg.2023.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/11/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
As a continuation study, 29 novel triazoles containing benzyloxy phenyl isoxazole side chain were designed and synthesized based on our previous work. The majority of the compounds exhibited high potency in vitro antifungal activities against eight pathogenic fungi. The most active compounds 13, 20 and 27 displayed outstanding antifungal activity with MIC values ranging from <0.008 µg/mL to 1 µg/mL, and showed potent activity against six drug-resistant Candida auris isolates. Growth curve assays further confirmed the high potency of these compounds. Moreover, compounds 13, 20 and 27 showed a potent inhibitory activity on biofilm formation of C. albicans SC5314 and C. neoformans H99. Notably, compound 13 showed no inhibition of human CYP1A2 and low inhibitory activity against CYP2D6 and CYP3A4, suggesting a low risk of drug-drug interactions. With high potency in vitro and in vivo and good safety profiles, compound 13 will be further investigated as a promising candidate.
Collapse
Affiliation(s)
- Xiaochen Chi
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China; School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xianru Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences, No. 258 Tianxiong Road, Shanghai 201318, China
| | - Guangxin Xia
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., No. 898 Halei Road, Zhangjiang Hi-tech Park, Pudong New Area, Shanghai 201203, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China; School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|