1
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Hanzlova M, Slavikova B, Morozovova M, Musilek K, Rotterova A, Zemanová L, Kudova E. C-3 Steroidal Hemiesters as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 10. ACS OMEGA 2024; 9:12116-12124. [PMID: 38496976 PMCID: PMC10938439 DOI: 10.1021/acsomega.3c10148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
17β-HSD10 is a mitochondrial enzyme that catalyzes the steroidal oxidation of a hydroxy group to a keto group and, thus, is involved in maintaining steroid homeostasis. The druggability of 17β-HSD10 is related to potential treatment for neurodegenerative diseases, for example, Alzheimer's disease or cancer. Herein, steroidal derivatives with an acidic hemiester substituent at position C-3 on the skeleton were designed, synthesized, and evaluated by using pure recombinant 17β-HSD10 converting 17β-estradiol to estrone. Compounds 22 (IC50 = 6.95 ± 0.35 μM) and 23 (IC50 = 5.59 ± 0.25 μM) were identified as the most potent inhibitors from the series. Compound 23 inhibited 17β-HSD10 activity regardless of the substrate. It was found not cytotoxic toward the HEK-293 cell line and able to inhibit 17β-HSD10 activity also in the cellular environment. Together, these findings support steroidal compounds as promising candidates for further development as 17β-HSD10 inhibitors.
Collapse
Affiliation(s)
- Michaela Hanzlova
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Barbora Slavikova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, Prague 6 166 10, Czech Republic
| | - Marina Morozovova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, Prague 6 166 10, Czech Republic
| | - Kamil Musilek
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lucie Zemanová
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eva Kudova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, Prague 6 166 10, Czech Republic
| |
Collapse
|
3
|
He XY, Frackowiak J, Dobkin C, Brown WT, Yang SY. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer's Disease. Int J Mol Sci 2023; 24:17604. [PMID: 38139430 PMCID: PMC10743717 DOI: 10.3390/ijms242417604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product playing an appreciable role in cognitive functions. It is the main hub of exercise-upregulated mitochondrial proteins and is involved in a variety of metabolic pathways including neurosteroid metabolism to regulate allopregnanolone homeostasis. Deacetylation of 17β-HSD10 by sirtuins helps regulate its catalytic activities. 17β-HSD10 may also play a critical role in the control of mitochondrial structure, morphology and dynamics by acting as a member of the Parkin/PINK1 pathway, and by binding to cyclophilin D to open mitochondrial permeability pore. 17β-HSD10 also serves as a component of RNase P necessary for mitochondrial tRNA maturation. This dehydrogenase can bind with the Aβ peptide thereby enhancing neurotoxicity to brain cells. Even in the absence of Aβ, its quantitative and qualitative variations can result in neurodegeneration. Since elevated levels of 17β-HSD10 were found in brain cells of Alzheimer's disease (AD) patients and mouse AD models, it is considered to be a key factor in AD pathogenesis. Since data underlying Aβ-binding-alcohol dehydrogenase (ABAD) were not secured from reported experiments, ABAD appears to be a fabricated alternative term for the HSD17B10 gene product. Results of this study would encourage researchers to solve the question why elevated levels of 17β-HSD10 are present in brains of AD patients and mouse AD models. Searching specific inhibitors of 17β-HSD10 may find candidates to reduce senile neurodegeneration and open new approaches for the treatment of AD.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jannusz Frackowiak
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - William Ted Brown
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Song-Yu Yang
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Ph.D. Program in Biology-Neuroscience, Graduate Center of the City, University of New York, New York, NY 10016, USA
| |
Collapse
|
4
|
Hanzlova M, Miskerikova MS, Rotterova A, Chalupova K, Jurkova K, Hamsikova M, Andrys R, Haleckova A, Svobodova J, Schmidt M, Benek O, Musilek K. Nanomolar Benzothiazole-Based Inhibitors of 17β-HSD10 with Cellular Bioactivity. ACS Med Chem Lett 2023; 14:1724-1732. [PMID: 38116418 PMCID: PMC10726454 DOI: 10.1021/acsmedchemlett.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Multifunctional mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a potential drug target for the treatment of various pathologies. The most discussed is the pathology associated with Alzheimer's disease (AD), where 17β-HSD10 overexpression and its interaction with amyloid-β peptide contribute to mitochondrial dysfunction and neuronal stress. In this work, a series of new benzothiazole-derived 17β-HSD10 inhibitors were designed based on the structure-activity relationship analysis of formerly published inhibitors. A set of enzyme-based and cell-based methods were used to evaluate the inhibitory potency of new compounds, their interaction with the enzyme, and their cytotoxicity. Most compounds exhibited significantly a higher inhibitory potential compared to published benzothiazolyl ureas and good target engagement in a cellular environment accompanied by low cytotoxicity. The best hits displayed mixed-type inhibition with half maximal inhibitory concentration (IC50) values in the nanomolar range for the purified enzyme (3-7, 15) and/or low micromolar IC50 values in the cell-based assay (6, 13-16).
Collapse
Affiliation(s)
| | | | | | - Katarina Chalupova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Katarina Jurkova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Marie Hamsikova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Annamaria Haleckova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jana Svobodova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Schmidt M, Vaskova M, Rotterova A, Fiandova P, Miskerikova M, Zemanova L, Benek O, Musilek K. Physiologically relevant fluorescent assay for identification of 17β-hydroxysteroid dehydrogenase type 10 inhibitors. J Neurochem 2023; 167:154-167. [PMID: 37458164 DOI: 10.1111/jnc.15917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (HSD10) is a potential molecular target for treatment of mitochondrial-related disorders such as Alzheimer's disease (AD). Its over-expression in AD brains is one of the critical factors disturbing the homeostasis of neuroprotective steroids and exacerbating amyloid beta (Aβ)-mediated mitochondrial toxicity and neuronal stress. This study was focused on revalidation of the most potent HSD10 inhibitors derived from benzothiazolyl urea scaffold using fluorescent-based enzymatic assay with physiologically relevant substrates of 17β-oestradiol and allopregnanolone. The oestradiol-based assay led to the identification of two nanomolar inhibitors (IC50 70 and 346 nM) differing from HSD10 hits revealed from the formerly used assay. Both identified inhibitors were found to be effective also in allopregnanolone-based assay with non-competitive or uncompetitive mode of action. In addition, both inhibitors were confirmed to penetrate the HEK293 cells and they were able to inhibit the HSD10 enzyme in the cellular environment. Both molecules seem to be potential lead structures for further research and development of HDS10 inhibitors.
Collapse
Affiliation(s)
- Monika Schmidt
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michaela Vaskova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavlina Fiandova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marketa Miskerikova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lucie Zemanova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|