1
|
Gomes LS, Costa ÉDO, Duarte TG, Charret TS, Castiglione RC, Simões RL, Pascoal VDB, Döring TH, da Silva FDC, Ferreira VF, S. de Oliveira A, Pascoal ACRF, Cruz AL, Nascimento V. New Chalcogen-Functionalized Naphthoquinones: Design, Synthesis, and Evaluation, In Vitro and In Silico, against Squamous Cell Carcinoma. ACS OMEGA 2024; 9:21948-21963. [PMID: 38799368 PMCID: PMC11112715 DOI: 10.1021/acsomega.3c10134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Due to the growth in the number of patients and the complexity involved in anticancer therapies, new therapeutic approaches are urgent and necessary. In this context, compounds containing the selenium atom can be employed in developing new medicines due to their potential therapeutic efficacy and unique modes of action. Furthermore, tellurium, a previously unknown element, has emerged as a promising possibility in chalcogen-containing compounds. In this study, 13 target compounds (9a-i, 10a-c, and 11) were effectively synthesized as potential anticancer agents, employing a CuI-catalyzed Csp-chalcogen bond formation procedure. The developed methodology yielded excellent results, ranging from 30 to 85%, and the compounds were carefully characterized. Eight of these compounds showed promise as potential therapeutic drugs due to their high yields and remarkable selectivity against SCC-9 cells (squamous cell carcinoma). Compound 10a, in particular, demonstrated exceptional selectivity, making it an excellent choice for cancer cell targeting while sparing healthy cells. Furthermore, complementing in silico and molecular docking studies shed light on their physical features and putative modes of action. This research highlights the potential of these compounds in anticancer treatments and lays the way for future drug development efforts.
Collapse
Affiliation(s)
- Luana
da Silva Gomes
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Érica de Oliveira Costa
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thuany G. Duarte
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thiago S. Charret
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Raquel C. Castiglione
- Laboratory
for Clinical and Experimental Research on Vascular Biology, Biomedical
Center, State University of Rio de Janeiro, Rio de Janeiro-RJ 20550-900, Brazil
| | - Rafael L. Simões
- Laboratory
of Molecular and Cellular Pharmacology, Roberto Alcântara Gomes
Biology Institute, State University of Rio
de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Vinicius D. B. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Thiago H. Döring
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Fernando de C. da Silva
- Applied Organic
Synthesis Laboratory (LabSOA), Institute of Chemistry, Universidade Federal Fluminense, Niterói-RJ 24020-141, Brazil
| | - Vitor F. Ferreira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC 89036-256, Brazil
| | - Aldo S. de Oliveira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Aislan C. R. F. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - André L.
S. Cruz
- Physiopathology
Laboratory, Institute of Medical Sciences, Multidisciplinary Center
UFRJ, Federal University of Rio De Janeiro
(UFRJ), Macaé-RJ 27930-560, Brazil
| | - Vanessa Nascimento
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| |
Collapse
|
2
|
Cai N, Gao X, Yang L, Li W, Sun W, Zhang S, Zhao J, Qu J, Zhou Y. Discovery of novel NSAID hybrids as cPLA 2/COX-2 dual inhibitors alleviating rheumatoid arthritis via inhibiting p38 MAPK pathway. Eur J Med Chem 2024; 267:116176. [PMID: 38286094 DOI: 10.1016/j.ejmech.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 μΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.
| |
Collapse
|