1
|
Melas M, Kautto EA, Franklin SJ, Mori M, McBride KL, Mosher TM, Pfau RB, Hernandez-Gonzalez ME, McGrath SD, Magrini VJ, White P, Samora JB, Koboldt DC, Wilson RK. Long-read whole genome sequencing reveals HOXD13 alterations in synpolydactyly. Hum Mutat 2021; 43:189-199. [PMID: 34859533 DOI: 10.1002/humu.24304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Synpolydactyly 1, also called syndactyly type II (SDTY2), is a genetic limb malformation characterized by polydactyly with syndactyly involving the webbing of the third and fourth fingers, and the fourth and fifth toes. It is caused by heterozygous alterations in HOXD13 with incomplete penetrance and phenotypic variability. In our study, a five-generation family with an SPD phenotype was enrolled in our Rare Disease Genomics Protocol. A comprehensive examination of three generations using Illumina short-read whole-genome sequencing (WGS) did not identify any causative variants. Subsequent WGS using Pacific Biosciences (PacBio) long-read HiFi Circular Consensus Sequencing (CCS) revealed a heterozygous 27-bp duplication in the polyalanine tract of HOXD13. Sanger sequencing of all available family members confirmed that the variant segregates with affected individuals. Reanalysis of an unrelated family with a similar SPD phenotype uncovered a 21-bp (7-alanine) duplication in the same region of HOXD13. Although ExpansionHunter identified these events in most individuals in a retrospective analysis, low sequence coverage due to high GC content in the HOXD13 polyalanine tract makes detection of these events challenging. Our findings highlight the value of long-read WGS in elucidating the molecular etiology of congenital limb malformation disorders.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Esko A Kautto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samuel J Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mari Mori
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Ruthann B Pfau
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent J Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Julie Balch Samora
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Bondos SE, Geraldo Mendes G, Jons A. Context-dependent HOX transcription factor function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:225-262. [PMID: 32828467 DOI: 10.1016/bs.pmbts.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, HOX transcription factors determine the fate of developing tissues to generate diverse organs and appendages. The power of these proteins is striking: mis-expressing a HOX protein causes homeotic transformation of one body part into another. During development, HOX proteins interpret their cellular context through protein interactions, alternative splicing, and post-translational modifications to regulate cell proliferation, cell death, cell migration, cell differentiation, and angiogenesis. Although mutation and/or mis-expression of HOX proteins during development can be lethal, changes in HOX proteins that do not pattern vital organs can result in survivable malformations. In adults, mutation and/or mis-expression of HOX proteins disrupts their gene regulatory networks, deregulating cell behaviors and leading to arthritis and cancer. On the molecular level, HOX proteins are composed of DNA binding homeodomain, and large regions of unstructured, or intrinsically disordered, protein sequence. The primary roles of HOX proteins in arthritis and cancer suggest that mutations associated with these diseases in both the structured and disordered regions of HOX proteins can have substantial functional effects. These insights lead to new questions critical for understanding and manipulating HOX function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States.
| | - Gabriela Geraldo Mendes
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Amanda Jons
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
A Review of the Phenotype of Synpolydactyly Type 1 in Homozygous Patients: Defining the Relatively Long and Medially Deviated Big Toe with/without Cupping of the Forefoot as a Pathognomonic Feature in the Phenotype. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2067186. [PMID: 32509852 PMCID: PMC7246408 DOI: 10.1155/2020/2067186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/02/2020] [Indexed: 12/03/2022]
Abstract
Synpolydactyly type 1 (SPD1, OMIM 186000) is inherited as autosomal dominant and is caused by HOXD13 mutations. The condition is rare and is known for its phenotypic heterogeneity. In the homozygous state, the phenotype is generally more severe and is characterized by three main features: a more severe degree of syndactyly, a more severe degree of brachydactyly, and the frequent loss of the normal tubular shape of the metacarpals/metatarsals. Due to the phenotypic heterogeneity and the phenotypic overlap with other types of syndactyly, no pathognomonic feature has been described for the homozygous phenotype of SPD1. In the current communication, the author reviews the literature on the phenotypes of SPD1 in homozygous patients. The review documents that not all homozygous patients show a severe hand phenotype. The review also defines the “relatively long and medially deviated big toe with/without cupping of the forefoot” as a pathognomonic feature in the phenotype. Illustration of this feature is done through a demonstrative clinical report in a multigeneration family with SPD1 and HOXD13 polyalanine repeat expansion. Finally, the pathogenesis of the clinical features is reviewed.
Collapse
|
4
|
A heterozygous duplication variant of the HOXD13 gene caused synpolydactyly type 1 with variable expressivity in a Chinese family. BMC MEDICAL GENETICS 2019; 20:203. [PMID: 31870337 PMCID: PMC6929446 DOI: 10.1186/s12881-019-0908-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
Background Synpolydactyly type 1 (SPD1), also known as syndactyly type II, is an autosomal dominant limb deformity generally results in webbing of 3rd and 4th fingers, duplication of 4th or 5th toes. It is most commonly caused by mutation in HOXD13 gene. In this study, a five-generation Chinese family affected with SPD1 disease were collected. We tried to identify the pathogenic variations associated with SPD1 involved in the family. Methods We used the whole genome sequencing (WGS) to identify the pathogenic variant in this family which was later confirmed by PCR-Sanger sequencing. The genetic variation were evaluated with the frequencies in the 1000 Genome Project and Exome Aggregation Consortium (ExAC) dataset. The significance of variants were assessed using different mutation predictor softwares like Mutation Taster, PROVEAN and SIFT. The classification of variants was assessed according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results Our results showed the mutation of 24-base pair duplication (c.183_206dupAGCGGCGGCTGCGGCGGCGGCGGC) in exon one of HOXD13 in heterozygous form which was predicted to result in eight extra alanine (A) residues in N-terminal domain of HOXD13 protein. The mutation was detected in all affected members of the family. Conclusion Based on our mutation analysis of variant c.183_206dupAGCGGCGGCTGCGGCGGCGGCGGC in HOXD13 and its cosegregation in all affected family members, we found this variant as likely pathogenic to this SPD1 family. Our study highlights variable expressivity of HOXD13 mutation. Our results also widen the spectrum of HOXD13 mutation responsible for SPD1.
Collapse
|
5
|
WITHDRAWN: A 24-base pair duplication in exon one of HOXD13 gene linked to synpolydactyly type 1 in a Chinese family. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Wall LB, Bae DS, Oishi SN, Calfee RP, Goldfarb CA. Synpolydactyly of the hand: a radiographic classification. J Hand Surg Eur Vol 2016; 41:301-7. [PMID: 26269507 DOI: 10.1177/1753193415598281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 02/03/2023]
Abstract
UNLABELLED Synpolydactyly is an uncommon congenital anomaly characterized by polydactyly with syndactyly in the central hand. The purpose of this investigation was to develop and assess the reliability of a radiographic classification system for synpolydactyly. We identified 56 hands with central synpolydactyly and developed a radiographic classification system that categorizes by the location within the hand, the bony level of polydactyly, and the presence of a delta phalanx. Four paediatric hand surgeons independently reviewed each radiograph to establish reliability. There was exact agreement among raters in 40 cases (71%). The inter-rater reliability was 0.97 and intra-rater reliability was at least 0.87. Seven of 16 bilateral cases had symmetric deformity classification. The most common presentations were types 1A and 2A. We present a new, reliable radiographic classification system for synpolydactyly that will allow improved communication between clinicians and serve as a foundation for future investigations. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- L B Wall
- Department of Orthopaedic Surgery, Shriner's Hospital for Children and St. Louis Children's Hospital at Washington University School of Medicine, St Louis, MO, USA
| | - D S Bae
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - S N Oishi
- Texas Scottish Rite Hospital, Dallas, TX, USA
| | - R P Calfee
- Department of Orthopaedic Surgery, Shriner's Hospital for Children and St. Louis Children's Hospital at Washington University School of Medicine, St Louis, MO, USA
| | - C A Goldfarb
- Department of Orthopaedic Surgery, Shriner's Hospital for Children and St. Louis Children's Hospital at Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
7
|
Ibrahim DM, Tayebi N, Knaus A, Stiege AC, Sahebzamani A, Hecht J, Mundlos S, Spielmann M. A homozygous HOXD13 missense mutation causes a severe form of synpolydactyly with metacarpal to carpal transformation. Am J Med Genet A 2015; 170:615-21. [PMID: 26581570 DOI: 10.1002/ajmg.a.37464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/22/2015] [Indexed: 11/06/2022]
Abstract
Synpolydactyly (SPD) is a rare congenital limb disorder characterized by syndactyly between the third and fourth fingers and an additional digit in the syndactylous web. In most cases SPD is caused by heterozygous mutations in HOXD13 resulting in the expansion of a N-terminal polyalanine tract. If homozygous, the mutation results in severe shortening of all metacarpals and phalanges with a morphological transformation of metacarpals to carpals. Here, we describe a novel homozygous missense mutation in a family with unaffected consanguineous parents and severe brachydactyly and metacarpal-to-carpal transformation in the affected child. We performed whole exome sequencing on the index patient, followed by Sanger sequencing of parents and patient to investigate cosegregation. The DNA-binding ability of the mutant protein was tested with electrophoretic mobility shift assays. We demonstrate that the c.938C>G (p.313T>R) mutation in the DNA-binding domain of HOXD13 prevents binding to DNA in vitro. Our results show to our knowledge for the first time that a missense mutation in HOXD13 underlies severe brachydactyly with metacarpal-to-carpal transformation. The mutation is non-penetrant in heterozygous carriers. In conjunction with the literature we propose the possibility that the metacarpal-to-carpal transformation results from a homozygous loss of functional HOXD13 protein in humans in combination with an accumulation of non-functional HOXD13 that might be able to interact with other transcription factors in the developing limb.
Collapse
Affiliation(s)
- Daniel M Ibrahim
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Naeimeh Tayebi
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexej Knaus
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Asita C Stiege
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Jochen Hecht
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Malte Spielmann
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| |
Collapse
|
8
|
Brison N, Debeer P, Tylzanowski P. Joining the fingers: AHOXD13story. Dev Dyn 2013; 243:37-48. [DOI: 10.1002/dvdy.24037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Nathalie Brison
- Center for Human Genetics; University Hospitals Leuven, University of Leuven; Belgium
| | - Philippe Debeer
- Department of Development and Regeneration; University of Leuven; Belgium
| | | |
Collapse
|
9
|
Limb skeletal malformations – What the HOX is going on? Eur J Med Genet 2012; 55:1-7. [DOI: 10.1016/j.ejmg.2011.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 11/21/2022]
|
10
|
Abstract
Synpolydactyly 1 (SPD1; OMIM 186000), also known as type II syndactyly, is a dominantly inherited limb malformation that is characterized by an increased number of digits. SPD1 is most commonly caused by polyalanine repeat expansions in the coding region of the HOXD13 gene, which are believed to show a dominant-negative effect. In addition, missense and out-of-frame deletion mutations in the HOXD13 gene are also known to cause SPD, and the mechanism responsible for the phenotype appears to be haploinsufficiency. Here, we analyzed a large consanguineous family from Pakistan with SPD showing a wide variation in phenotype among affected individuals. We performed genetic linkage analysis, which identified a region on chromosome 2 containing the HOXD13 gene. Haplotype analysis with microsatellite markers suggested segregation of the phenotype with HOXD13 gene with incomplete penetrance. Direct sequencing analysis of HOXD13 gene revealed a nonsense mutation, designated Q248X. All affected individuals with the severe SPD phenotype are homozygous for the mutation, while those with the mild SPD phenotype are heterozygous for the mutation. Furthermore, some unaffected individuals also carry the mutation in the heterozygous state, showing incomplete penetrance. Our results demonstrate the first nonsense mutation in the HOXD13 gene underlying a severe form of SPD in the homozygous state, and a milder form of SPD with approximately 50% penetrance in the heterozygous state, most likely due to the production of 50% of protein compared to normal individuals..
Collapse
|
11
|
Wajid M, Ishii Y, Kurban M, Dua-Awereh MB, Shimomura Y, Christiano AM. Polyalamine repeat expansion mutations in theHOXD13gene in Pakistani families with synpolydactyly. Clin Genet 2009; 76:300-2. [DOI: 10.1111/j.1399-0004.2009.01213.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly. Genetics 2009; 183:23-30. [PMID: 19546318 DOI: 10.1534/genetics.109.104695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.
Collapse
|
13
|
Beysen D, De Paepe A, De Baere E. FOXL2 mutations and genomic rearrangements in BPES. Hum Mutat 2009; 30:158-69. [PMID: 18726931 DOI: 10.1002/humu.20807] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The FOXL2 gene is one of 10 forkhead genes, the mutations of which lead to human developmental disorders, often with ocular manifestations. Mutations in FOXL2 are known to cause blepharophimosis syndrome (BPES), an autosomal dominant eyelid malformation associated (type I) or not (type II) with ovarian dysfunction, leading to premature ovarian failure (POF). In addition, a few mutations have been described in patients with isolated POF. Here, we review all currently described FOXL2 sequence variations and genomic rearrangements in BPES and POF. Using a combined mutation detection approach, it is possible to identify the underlying genetic defect in a major proportion (88%) of typical BPES patients. Of all genetic defects found in our BPES cohort, intragenic mutations represent 81%. They include missense changes, frameshift and nonsense mutations, in-frame deletions, and duplications, that are distributed along the single-exon gene. Genomic rearrangements comprising both deletions encompassing FOXL2 and deletions located outside its transcription unit, represent 12% and 5% of all genetic defects in our BPES cohort, respectively. One of the challenges of genetic testing in BPES is the establishment of genotype-phenotype correlations, mainly with respect to the ovarian phenotype. Genetic testing should be performed in the context of genetic counseling, however, and should be systematically complemented by a multidisciplinary clinical follow-up. Another challenge for health care professionals involved in BPES is the treatment of the eyelid phenotype and the prevention or treatment of POF.
Collapse
Affiliation(s)
- Diane Beysen
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
14
|
|
15
|
Nallathambi J, Moumné L, De Baere E, Beysen D, Usha K, Sundaresan P, Veitia RA. A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of the blepharophimosis syndrome (BPES) associated with ovarian dysfunction. Hum Genet 2006; 121:107-12. [PMID: 17089161 DOI: 10.1007/s00439-006-0276-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
The blepharophimosis syndrome (BPES) is an autosomal dominant developmental disorder in which craniofacial/eyelid malformations are associated (type I) or not (type II) with premature ovarian failure (POF). Mutations in the FOXL2 gene, encoding a forkhead transcription factor, are responsible for both types of BPES. Heterozygous polyalanine expansions of +10 residues (FOXL2-Ala24) account for 30% of FOXL2 mutations and are fully penetrant for the eyelid phenotype. Here we describe the first homozygous FOXL2 mutation leading to a polyalanine expansion of +5 residues (FOXL2-Ala19). This novel mutation segregates in an Indian family where heterozygous mutation carriers are unaffected whereas homozygous individuals have the typical BPES phenotype, with proven POF in one female. Expression of the FOXL2-Ala19 protein in COS-7 cells revealed a significantly higher cytoplasmic retention compared to the wild-type protein. This is the first study providing genetic evidence for a recessive inheritance of BPES associated with ovarian dysfunction.
Collapse
Affiliation(s)
- Jeyabalan Nallathambi
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | | | | | | | | | | | | |
Collapse
|