1
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
2
|
Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J, Brun P, Fabro M, Galain M, Fernández CS, Taboas M, Bruque CD, Kolomenski JE, Izquierdo A, Berenstein A, Cosentino V, Martinoli C, Vilas M, Rittler M, Mendez R, Furforo L, Liascovich R, Groisman B, Rozental S, Dain L. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Genes (Basel) 2022; 13:1172. [PMID: 35885957 PMCID: PMC9317700 DOI: 10.3390/genes13071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital anomalies (CA) affect 3-5% of newborns, representing the second-leading cause of infant mortality in Argentina. Multiple congenital anomalies (MCA) have a prevalence of 2.26/1000 births in newborns, while congenital heart diseases (CHD) are the most frequent CA with a prevalence of 4.06/1000 births. The aim of this study was to identify the genetic causes in Argentinian patients with MCA and isolated CHD. We recruited 366 patients (172 with MCA and 194 with isolated CHD) born between June 2015 and August 2019 at public hospitals. DNA from peripheral blood was obtained from all patients, while karyotyping was performed in patients with MCA. Samples from patients presenting conotruncal CHD or DiGeorge phenotype (n = 137) were studied using MLPA. Ninety-three samples were studied by array-CGH and 18 by targeted or exome next-generation sequencing (NGS). A total of 240 patients were successfully studied using at least one technique. Cytogenetic abnormalities were observed in 13 patients, while 18 had clinically relevant imbalances detected by array-CGH. After MLPA, 26 patients presented 22q11 deletions or duplications and one presented a TBX1 gene deletion. Following NGS analysis, 12 patients presented pathogenic or likely pathogenic genetic variants, five of them, found in KAT6B, SHH, MYH11, MYH7 and EP300 genes, are novel. Using an algorithm that combines molecular techniques with clinical and genetic assessment, we determined the genetic contribution in 27.5% of the analyzed patients.
Collapse
Affiliation(s)
- Marisol Delea
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lucia S. Massara
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Lucia D. Espeche
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - María Paz Bidondo
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Unidad Académica de Histologia, Embriologia, Biologia Celular y Genética, Facultad de Medicina UBA, Paraguay 2155, Buenos Aires 1121, Argentina
| | - Pablo Barbero
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jaen Oliveri
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Paloma Brun
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Mónica Fabro
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | - Micaela Galain
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | | | - Melisa Taboas
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jorge E. Kolomenski
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá”. Gallo 1330, Buenos Aires 1425, Argentina;
| | - Ariel Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Gallo 1330, Buenos Aires 1425, Argentina;
| | - Viviana Cosentino
- Hospital Interzonal General de Agudos Luisa Cravenna de Gandulfo, Balcarce 351, Lomas de Zamora 1832, Argentina;
| | - Celeste Martinoli
- Hospital Sor Maria Ludovica, Calle 14 1631, La Plata 1904, Argentina;
| | - Mariana Vilas
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Mónica Rittler
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rodrigo Mendez
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lilian Furforo
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rosa Liascovich
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Boris Groisman
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Sandra Rozental
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Liliana Dain
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | | |
Collapse
|
3
|
John A, Ng-Cordell E, Hanna N, Brkic D, Baker K. The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 2021; 157:208-228. [PMID: 32738165 DOI: 10.1111/jnc.15135] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence synaptic vesicle cycling (SVC disorders). Pathogenic variants in each SVC disorder gene lead to disturbance of at least one SVC subprocess, namely vesicle trafficking (e.g. KIF1A and GDI1), clustering (e.g. TRIO, NRXN1 and SYN1), docking and priming (e.g. STXBP1), fusion (e.g. SYT1 and PRRT2) or re-uptake (e.g. DNM1, AP1S2 and TBC1D24). We observe that SVC disorders share a common set of neurological symptoms (movement disorders, epilepsies), cognitive impairments (developmental delay, intellectual disabilities, cerebral visual impairment) and mental health difficulties (autism, ADHD, psychiatric symptoms). On the other hand, there is notable phenotypic variation between and within disorders, which may reflect selective disruption to SVC subprocesses, spatiotemporal and cell-specific gene expression profiles, mutation-specific effects, or modifying factors. Understanding the common cellular and systems mechanisms underlying neurodevelopmental phenotypes in SVC disorders, and the factors responsible for variation in clinical presentations and outcomes, may translate to personalized clinical management and improved quality of life for patients and families.
Collapse
Affiliation(s)
- Abinayah John
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Nancy Hanna
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkic
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Investigating regions of shared genetic variation in attention deficit/hyperactivity disorder and major depressive disorder: a GWAS meta-analysis. Sci Rep 2021; 11:7353. [PMID: 33795730 PMCID: PMC8016853 DOI: 10.1038/s41598-021-86802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) demonstrates a high level of comorbidity with major depressive disorder (MDD). One possible contributor to this is that the two disorders show high genetic correlation. However, the specific regions of the genome that may be responsible for this overlap are unclear. To identify variants associated with both ADHD and MDD, we performed a meta-analysis of GWAS of ADHD and MDD. All genome wide significant (p < 5 × 10–8) SNPs in the meta-analysis that were also strongly associated (p < 5 × 10–4) independently with each disorder were followed up. These putatively pleiotropic SNPs were tested for additional associations across a broad range of phenotypes. Fourteen linkage disequilibrium-independent SNPs were associated with each disorder separately (p < 5 × 10–4) and in the cross-disorder meta-analysis (p < 5 × 10–8). Nine of these SNPs had not been highlighted previously in either individual GWAS. Evidence supported nine of the fourteen SNPs acting as eQTL and two as brain eQTL. Index SNPs and their genomic regions demonstrated associations with other mental health phenotypes. Through conducting meta-analysis on ADHD and MDD only, our results build upon the previously observed genetic correlation between ADHD and MDD and reveal novel genomic regions that may be implicated in this overlap.
Collapse
|
5
|
Shukla A, Kaur P, Narayanan DL, do Rosario MC, Kadavigere R, Girisha KM. Genetic disorders with central nervous system white matter abnormalities: An update. Clin Genet 2021; 99:119-132. [PMID: 33047326 PMCID: PMC9951823 DOI: 10.1111/cge.13863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Several genetic disorders have variable degree of central nervous system white matter abnormalities. We retrieved and reviewed 422 genetic conditions with prominent and consistent involvement of white matter from the literature. We herein describe the current definitions, classification systems, clinical spectrum, neuroimaging findings, genomics, and molecular mechanisms of these conditions. Though diagnosis for most of these disorders relies mainly on genomic tests, specifically exome sequencing, we collate several clinical and neuroimaging findings still relevant in diagnosis of clinically recognizable disorders. We also review the current understanding of pathophysiology and therapeutics of these disorders.
Collapse
Affiliation(s)
- Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Lee JS, Hwang H, Kim SY, Kim KJ, Choi JS, Woo MJ, Choi YM, Jun JK, Lim BC, Chae JH. Chromosomal Microarray With Clinical Diagnostic Utility in Children With Developmental Delay or Intellectual Disability. Ann Lab Med 2018; 38:473-480. [PMID: 29797819 PMCID: PMC5973923 DOI: 10.3343/alm.2018.38.5.473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chromosomal microarray (CMA) testing is a first-tier test for patients with developmental delay, autism, or congenital anomalies. It increases diagnostic yield for patients with developmental delay or intellectual disability. In some countries, including Korea, CMA testing is not yet implemented in clinical practice. We assessed the diagnostic utility of CMA testing in a large cohort of patients with developmental delay or intellectual disability in Korea. METHODS We conducted a genome-wide microarray analysis of 649 consecutive patients with developmental delay or intellectual disability at the Seoul National University Children's Hospital. Medical records were reviewed retrospectively. Pathogenicity of detected copy number variations (CNVs) was evaluated by referencing previous reports or parental testing using FISH or quantitative PCR. RESULTS We found 110 patients to have pathogenic CNVs, which included 100 deletions and 31 duplications of 270 kb to 30 Mb. The diagnostic yield was 16.9%, demonstrating the diagnostic utility of CMA testing in clinic. Parental testing was performed in 66 patients, 86.4% of which carried de novo CNVs. In eight patients, pathogenic CNVs were inherited from healthy parents with a balanced translocation, and genetic counseling was provided to these families. We verified five rarely reported deletions on 2p21p16.3, 3p21.31, 10p11.22, 14q24.2, and 21q22.13. CONCLUSIONS This study demonstrated the clinical utility of CMA testing in the genetic diagnosis of patients with developmental delay or intellectual disability. CMA testing should be included as a clinical diagnostic test for all children with developmental delay or intellectual disability.
Collapse
Affiliation(s)
- Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Sun Choi
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jung Woo
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Choi
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Jong Kwan Jun
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Jong Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Ververi A, Splitt M, Dean JCS, Brady AF. Phenotypic spectrum associated with de novo mutations in QRICH1 gene. Clin Genet 2017; 93:286-292. [PMID: 28692176 DOI: 10.1111/cge.13096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022]
Abstract
Rare de novo mutations represent a significant cause of idiopathic developmental delay (DD). The use of next-generation sequencing (NGS) has boosted the identification of de novo mutations in an increasing number of novel genes. Here we present 3 unrelated children with de novo loss-of-function (LoF) mutations in QRICH1, diagnosed through trio-based exome sequencing. QRICH1 encodes the glutamine-rich protein 1, which contains 1 caspase activation recruitment domain and is likely to be involved in apoptosis and inflammation. All 3 children had speech delay, learning difficulties, a prominent nose and a thin upper lip. In addition, 2 of them had mildly raised creatine kinase (CK) and 1 of them had autism. Despite their small number, the patients had a relatively consistent pattern of clinical features suggesting the presence of a QRICH1-associated phenotype. LoF mutations in QRICH1 are suggested as a novel cause of DD.
Collapse
Affiliation(s)
- A Ververi
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Harrow, UK
| | - M Splitt
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, UK
| | - J C S Dean
- Department of Medical Genetics, Aberdeen Royal Infirmary, Aberdeen, UK
| | -
- DDD Study, Wellcome Trust Sanger Institute, Cambridge, UK
| | - A F Brady
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Harrow, UK
| |
Collapse
|
8
|
Mahapatra S, Ananth A, Baugh N, Damian M, Enns GM. Triheptanoin: A Rescue Therapy for Cardiogenic Shock in Carnitine-acylcarnitine Translocase Deficiency. JIMD Rep 2017; 39:19-23. [PMID: 28689308 DOI: 10.1007/8904_2017_36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
Carnitine-acylcarnitine translocase (CACT) deficiency is a rare long-chain fatty acid oxidation disorder (LC-FAOD) with high mortality due to cardiomyopathy or lethal arrhythmia. Triheptanoin (UX007), an investigational drug composed of synthetic medium odd-chain triglycerides, is a novel therapy in development for LC-FAOD patients. However, cases of its safe and efficacious use to reverse severe heart failure in CACT deficiency are limited. Here, we present a detailed report of an infant with CACT deficiency admitted in metabolic crisis that progressed into severe cardiogenic shock who was successfully treated by triheptanoin. The child was managed, thereafter, on triheptanoin until her death at 3 years of age from a cardiopulmonary arrest in the setting of acute respiratory illness superimposed on chronic hypercarbic respiratory failure.
Collapse
Affiliation(s)
- Sidharth Mahapatra
- Division of Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Amitha Ananth
- Pediatric Neurology, Brain and Spine Institute, Providence Health and Services, Portland, OR, 97225, USA
| | - Nancy Baugh
- Department of Clinical Nutrition, Lucile Packard Children's Hospital, Stanford, Palo Alto, CA, 94304, USA
| | - Mihaela Damian
- Division of Critical Care, Department of Pediatrics, Stanford University Medical Center, Palo Alto, CA, 94304, USA
| | - Gregory M Enns
- Division of Medical Genetics, Department of Pediatrics, Stanford University Medical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
9
|
The pseudokinase CaMKv is required for the activity-dependent maintenance of dendritic spines. Nat Commun 2016; 7:13282. [PMID: 27796283 PMCID: PMC5095516 DOI: 10.1038/ncomms13282] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 02/03/2023] Open
Abstract
Dendritic spine stabilization depends on afferent synaptic input and requires changes in actin cytoskeleton dynamics and protein synthesis. However, the underlying molecular mechanism remains unclear. Here we report the identification of ‘calmodulin kinase-like vesicle-associated' (CaMKv), a pseudokinase of the CaMK family with unknown function, as a synaptic protein crucial for dendritic spine maintenance. CaMKv mRNA localizes at dendrites, and its protein synthesis is regulated by neuronal activity. CaMKv function is inhibited upon phosphorylation by cyclin-dependent kinase 5 (Cdk5) at Thr345. Furthermore, CaMKv knockdown in mouse hippocampal CA1 pyramidal neurons impairs synaptic transmission and plasticity in vivo, resulting in hyperactivity and spatial memory impairment. These findings collectively indicate that the precise regulation of CaMKv through activity-dependent synthesis and post-translational phosphorylation is critical for dendritic spine maintenance, revealing an unusual signalling pathway in the regulation of synaptic transmission and brain function that involves a pseudokinase. CaMKv is a pseduokinase of unknown function. Here, the authors identify the protein as a substrate of the protein kinase Cdk5, and show that CaMKv is synthesized in response to neural activity and plays an important role in maintaining dendritic spines, synaptic plasticity, and hippocampal memory via RhoA inhibition.
Collapse
|
10
|
Lovrecic L, Bertok S, Žerjav Tanšek M. A New Case of an Extremely Rare 3p21.31 Interstitial Deletion. Mol Syndromol 2016; 7:93-8. [PMID: 27385966 DOI: 10.1159/000445227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 01/29/2023] Open
Abstract
Interstitial 3p21.31 deletions have been very rarely reported. We describe a 7-year-old boy with global developmental delay, specific facial characteristics, hydronephrosis, and hypothyreosis with a de novo deletion of 3p21.31, encompassing 29 OMIM genes. Despite the wide use of microarrays, no similar case has been reported in the literature so far. Five overlapping cases are deposited in the DECIPHER database, 2 of which have significant overlapping chromosomal aberrations. They both share some phenotypic characteristics with our case, e.g. developmental delay, intellectual disability and facial dysmorphism (arched eyebrows, hypertelorism, low-set ears, and a large nose tip). In addition, loss-of-function mutations in the SETD2 gene (OMIM 612778) of the deleted region have been described in 3 patients, presenting with some similar clinical features, namely overgrowth, intellectual disability, speech delay, hypotonia, autism, and epilepsy. Therefore, SETD2 may explain part of the phenotype in our case. We focused on 3 other genes in the deleted region, based on their known functions, namely CSPG5 (OMIM 606775), PTH1R (OMIM 168468) and SMARCC1 (OMIM 601732), and assessed their potentially important role in describing the patient's phenotype. Additional cases with haploinsufficiency of this region are needed to elucidate further genotype-phenotype correlations.
Collapse
Affiliation(s)
- Luca Lovrecic
- Division of Obstetrics and Gynecology, Clinical Institute of Medical Genetics, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Sara Bertok
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Mojca Žerjav Tanšek
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun 2015; 6:8681. [PMID: 26607847 PMCID: PMC4674680 DOI: 10.1038/ncomms9681] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023] Open
Abstract
PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 μm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4–PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1–GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4. PAK4 is a metazoan-specific kinase, which acts downstream of the cell polarity regulator Cdc42. Here, Baskaran et al. determine the structure of PAK4 bound to the endogenous inhibitor Inka1 from crystals that form spontaneously in mammalian cells overexpressing both proteins.
Collapse
|
12
|
Eto K, Sakai N, Shimada S, Shioda M, Ishigaki K, Hamada Y, Shinpo M, Azuma J, Tominaga K, Shimojima K, Ozono K, Osawa M, Yamamoto T. Microdeletions of 3p21.31 characterized by developmental delay, distinctive features, elevated serum creatine kinase levels, and white matter involvement. Am J Med Genet A 2013; 161A:3049-56. [DOI: 10.1002/ajmg.a.36156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Kaoru Eto
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Norio Sakai
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Shino Shimada
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Mutsuki Shioda
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Keiko Ishigaki
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Yusuke Hamada
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Michiko Shinpo
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Junji Azuma
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Koji Tominaga
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Keiichi Ozono
- Department of Pediatrics; Osaka University Graduate School of Medicine; Suita Japan
| | - Makiko Osawa
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| |
Collapse
|
13
|
Gajecka M, Saitta SC, Gentles AJ, Campbell L, Ciprero K, Geiger E, Catherwood A, Rosenfeld JA, Shaikh T, Shaffer LG. Recurrent interstitial 1p36 deletions: Evidence for germline mosaicism and complex rearrangement breakpoints. Am J Med Genet A 2011; 152A:3074-83. [PMID: 21108392 DOI: 10.1002/ajmg.a.33733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deletions of chromosome 1p36 are one of the most frequently encountered subtelomeric alterations. Clinical features of monosomy 1p36 include neurocognitive impairment, hearing loss, seizures, cardiac defects, and characteristic facial features. The majority of cases have occurred sporadically, implying that genomic instability plays a role in the prevalence of the syndrome. Here, we report two siblings with mild phenotypic features of the deletion syndrome, including developmental delay, hearing loss, and left ventricular non-compaction (LVNC). Microarray analysis using bacterial artificial chromosome and oligonucleotide microarrays indicated the deletions were identical, suggesting germline mosaicism. Parental phenotypes were normal, and analysis by fluorescence in situ hybridization (FISH) did not show mosaicism. These small interstitial deletions were not detectable by conventional subtelomeric FISH analysis. To investigate the mechanism of deletion further, the breakpoints were cloned and sequenced, demonstrating the presence of a complex rearrangement. Sequence analysis of genes in the deletion interval did not reveal any mutations on the intact homologue that may have contributed to the LVNC seen in both children. This is the first report of apparent germline mosaicism for this disorder. Thus, our findings have important implications for diagnostic approaches and for recurrence risk counseling in families with a child with monosomy 1p36. In addition, our results further refine the minimal critical region for LVNC and hearing loss.
Collapse
Affiliation(s)
- Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hayashi S, Imoto I, Aizu Y, Okamoto N, Mizuno S, Kurosawa K, Okamoto N, Honda S, Araki S, Mizutani S, Numabe H, Saitoh S, Kosho T, Fukushima Y, Mitsubuchi H, Endo F, Chinen Y, Kosaki R, Okuyama T, Ohki H, Yoshihashi H, Ono M, Takada F, Ono H, Yagi M, Matsumoto H, Makita Y, Hata A, Inazawa J. Clinical application of array-based comparative genomic hybridization by two-stage screening for 536 patients with mental retardation and multiple congenital anomalies. J Hum Genet 2010; 56:110-24. [DOI: 10.1038/jhg.2010.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Abstract
The PAX (paired box) genes are a family of transcription factors critical for fetal growth and organogenesis. Abnormalities of PAX2, PAX3, PAX6, and PAX9 are associated with various congenital craniofacial anomalies, including tooth abnormalities. We present here a boy with oligodontia and language delay. Dental x-rays showed that he lacked primary molars and was missing most of his permanent teeth. A genome-wide, single-nucleotide polymorphism-based microarray revealed a de novo 223-kb heterozygous deletion on 14q13.3 that included the PAX9 gene. In addition, the array showed 2 copies of the X chromosome and 1 copy of the Y chromosome, diagnostic for Klinefelter syndrome. The findings in this patient illustrate the role of the PAX9 gene in tooth development and provide the first example of a de novo deletion of 14q13.3 manifesting primarily with oligodontia. This report also supports the utility of genome-wide microarrays in determining the genetic cause of craniofacial abnormalities.
Collapse
|
16
|
Reid BS, Sargent TD, Williams T. Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closure. Dev Dyn 2010; 239:1188-96. [PMID: 20175189 DOI: 10.1002/dvdy.22248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Previous studies identified Inka1 as a gene regulated by AP-2alpha in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1(-/-) mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2alpha is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not.
Collapse
Affiliation(s)
- Bethany S Reid
- Department of Craniofacial Biology and Cell and Developmental Biology, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|