1
|
Liu Y, Banka S, Huang Y, Hardman-Smart J, Pye D, Torrelo A, Beaman GM, Kazanietz MG, Baker MJ, Ferrazzano C, Shi C, Orozco G, Eyre S, van Geel M, Bygum A, Fischer J, Miedzybrodzka Z, Abuzahra F, Rübben A, Cuvertino S, Ellingford JM, Smith MJ, Evans DG, Weppner-Parren LJMT, van Steensel MAM, Chaudhary IH, Mangham DC, Lear JT, Paus R, Frank J, Newman WG, Zhang X. Germline intergenic duplications at Xq26.1 underlie Bazex-Dupré-Christol basal cell carcinoma susceptibility syndrome. Br J Dermatol 2022; 187:948-961. [PMID: 35986704 DOI: 10.1111/bjd.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.
Collapse
Affiliation(s)
- Yanshan Liu
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Yingzhi Huang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jonathan Hardman-Smart
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- St John's Institute of Dermatology, Kings College London, London, WC2R 2LS, UK
| | - Derek Pye
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, 28009, Madrid, Spain
| | - Glenda M Beaman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carlo Ferrazzano
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Michel van Geel
- Department of Dermatology, University Hospital Maastricht, 6229, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, 6229, Maastricht, the Netherlands
| | - Anette Bygum
- Department of Clinical Genetics, Odense University Hospital, 5230, Odense, Denmark
- Hospital Clinical Institute, University of Southern Denmark, 5230, Odense, Denmark
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, AB25 2ZD, UK
- Medical Genetics Department, NHS Grampian, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Faris Abuzahra
- Department of Dermatology, Zaandam Medical Center, 1502, Zaandam, the Netherlands
| | - Albert Rübben
- Department of Dermatology and Allergology, University Hospital of RWTH Aachen, 52062, Aachen, Germany
| | - Sara Cuvertino
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jamie M Ellingford
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Miriam J Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | | | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138543, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 636921, Singapore
| | - Iskander H Chaudhary
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - D Chas Mangham
- Adult Histopathology, Laboratory Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - John T Lear
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- Department of Dermatology, Salford Royal NHS Foundation Trust, Manchester, M6 8AD, UK
| | - Ralf Paus
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, M13 9PL, UK
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33125, USA
- Monasterium Laboratory, Nano-Bioanalytik Zentrum, D-48149, Münster, Germany
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - William G Newman
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
3
|
Park HS, Papanastasi E, Blanchard G, Chiticariu E, Bachmann D, Plomann M, Morice-Picard F, Vabres P, Smahi A, Huber M, Pich C, Hohl D. ARP-T1-associated Bazex-Dupré-Christol syndrome is an inherited basal cell cancer with ciliary defects characteristic of ciliopathies. Commun Biol 2021; 4:544. [PMID: 33972689 PMCID: PMC8110579 DOI: 10.1038/s42003-021-02054-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Actin-Related Protein-Testis1 (ARP-T1)/ACTRT1 gene mutations cause the Bazex-Dupré-Christol Syndrome (BDCS) characterized by follicular atrophoderma, hypotrichosis, and basal cell cancer. Here, we report an ARP-T1 interactome (PXD016557) that includes proteins involved in ciliogenesis, endosomal recycling, and septin ring formation. In agreement, ARP-T1 localizes to the midbody during cytokinesis and the basal body of primary cilia in interphase. Tissue samples from ARP-T1-associated BDCS patients have reduced ciliary length. The severity of the shortened cilia significantly correlates with the ARP-T1 levels, which was further validated by ACTRT1 knockdown in culture cells. Thus, we propose that ARP-T1 participates in the regulation of cilia length and that ARP-T1-associated BDCS is a case of skin cancer with ciliopathy characteristics. Park et al. characterise the interactome, localisation and function of Actin-Related Protein-Testis1 protein (ARP-T1), encoded by the ACTRT1 gene, associated with inherited basal cell cancer. They find that ARP-T1 is localised to the primary cilia basal body in epidermal cells, interacts with the cilia machinery, and is needed for proper ciliogenesis.
Collapse
Affiliation(s)
- Hyun-Sook Park
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Eirini Papanastasi
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Gabriela Blanchard
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Elena Chiticariu
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Daniel Bachmann
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Markus Plomann
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Pierre Vabres
- Department of Dermatology, CHU, Hôpital du Bocage, Dijon, France
| | - Asma Smahi
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute INSERM UMR 1163, Paris, France
| | - Marcel Huber
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Christine Pich
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Daniel Hohl
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland.
| |
Collapse
|