1
|
Singh A, Pajni K, Panigrahi I, Khetarpal P. Clinical and Molecular Heterogeneity of Silver-Russell Syndrome and Therapeutic Challenges: A Systematic Review. Curr Pediatr Rev 2023; 19:157-168. [PMID: 35293298 DOI: 10.2174/1573396318666220315142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is a developmental disorder involving extreme growth failure, characteristic facial features and underlying genetic heterogeneity. As the clinical heterogeneity of SRS makes diagnosis a challenging task, the worldwide incidence of SRS could vary from 1:30,000 to 1:100,000. Although various chromosomal, genetic, and epigenetic mutations have been linked with SRS, the cause had only been identified in half of the cases. MATERIAL AND METHODS To have a better understanding of the SRS clinical presentation and mutation/ epimutation responsible for SRS, a systematic review of the literature was carried out using appropriate keywords in various scientific databases (PROSPERO protocol registration CRD42021273211). Clinical features of SRS have been compiled and presented corresponding to the specific genetic subtype. An attempt has been made to understand the recurrence risk and the role of model organisms in understanding the molecular mechanisms of SRS pathology, treatment, and management strategies of the affected patients through the analysis of selected literature. RESULTS 156 articles were selected to understand the clinical and molecular heterogeneity of SRS. Information about detailed clinical features was available for 228 patients only, and it was observed that body asymmetry and relative macrocephaly were most prevalent in cases with methylation defects of the 11p15 region. In about 38% of cases, methylation defects in ICRs or genomic mutations at the 11p15 region have been implicated. Maternal uniparental disomy of chromosome 7 (mUPD7) accounts for about 7% of SRS cases, and rarely, uniparental disomy of other autosomes (11, 14, 16, and 20 chromosomes) has been documented. Mutation in half of the cases is yet to be identified. Studies involving mice as experimental animals have been helpful in understanding the underlying molecular mechanism. As the clinical presentation of the syndrome varies a lot, treatment needs to be individualized with multidisciplinary effort. CONCLUSION SRS is a clinically and genetically heterogeneous disorder, with most of the cases being implicated with a mutation in the 11p15 region and maternal disomy of chromosome 7. Recurrence risk varies according to the molecular subtype. Studies with mice as a model organism have been useful in understanding the underlying molecular mechanism leading to the characteristic clinical presentation of the syndrome. Management strategies often need to be individualized due to varied clinical presentations.
Collapse
Affiliation(s)
- Amit Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Ketan Pajni
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Inusha Panigrahi
- Department of Paediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
2
|
Different Mechanisms Cause Hypomethylation of Both H19 and KCNQ1OT1 Imprinted Differentially Methylated Regions in Two Cases of Silver-Russell Syndrome Spectrum. Genes (Basel) 2022; 13:genes13101875. [PMID: 36292759 PMCID: PMC9602374 DOI: 10.3390/genes13101875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Silver–Russell syndrome is an imprinting disorder characterised by pre- and post-natal growth retardation and several heterogeneous molecular defects affecting different human genomic loci. In the majority of cases, the molecular defect is the loss of methylation (LOM) of the H19/IGF2 differentially methylated region (DMR, also known as IC1) at the telomeric domain of the 11p15.5 imprinted genes cluster, which causes the altered expression of the growth controlling genes, IGF2 and H19. Very rarely, the LOM also affects the KCNQ1OT1 DMR (also known as IC2) at the centromeric domain, resulting in an SRS phenotype by an unknown mechanism. In this study, we report on two cases with SRS features and a LOM of either IC1 and IC2. In one case, this rare and complex epimutation was secondary to a de novo mosaic in cis maternal duplication, involving the entire telomeric 11p15.5 domain and part of the centromeric domain but lacking CDKN1C. In the second case, neither the no 11p15.5 copy number variant nor the maternal-effect subcortical maternal complex (SCMC) variant were found to be associated with the epimutation, suggesting that it arose as a primary event. Our findings further add to the complexity of the molecular genetics of SRS and indicate how the LOM in both 11p15.5 DMRs may result from different molecular mechanisms.
Collapse
|
3
|
Brioude F, Kalish JM, Mussa A, Foster AC, Bliek J, Ferrero GB, Boonen SE, Cole T, Baker R, Bertoletti M, Cocchi G, Coze C, De Pellegrin M, Hussain K, Ibrahim A, Kilby MD, Krajewska-Walasek M, Kratz CP, Ladusans EJ, Lapunzina P, Le Bouc Y, Maas SM, Macdonald F, Õunap K, Peruzzi L, Rossignol S, Russo S, Shipster C, Skórka A, Tatton-Brown K, Tenorio J, Tortora C, Grønskov K, Netchine I, Hennekam RC, Prawitt D, Tümer Z, Eggermann T, Mackay DJG, Riccio A, Maher ER. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol 2018; 14:229-249. [PMID: 29377879 PMCID: PMC6022848 DOI: 10.1038/nrendo.2017.166] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Neonatal Intensive Care Unit, Department of Gynaecology and Obstetrics, Sant'Anna Hospital, Città della Salute e della Scienza di Torino, Corso Spezia 60, 10126 Torino, Italy
| | - Alison C Foster
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jet Bliek
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Giovanni Battista Ferrero
- Department of Public Health and Pediatric Sciences, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Susanne E Boonen
- Clinical Genetic Unit, Department of Pediatrics, Zealand University Hospital, Sygehusvej 10 4000 Roskilde, Denmark
| | - Trevor Cole
- Birmingham Health Partners, West Midlands Regional Genetics Service, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham B15 2TG, UK
| | - Robert Baker
- Beckwith-Wiedemann Support Group UK, The Drum and Monkey, Wonston, Hazelbury Bryan, Sturminster Newton, Dorset DT10 2EE, UK
| | - Monica Bertoletti
- Italian Association of Beckwith-Wiedemann syndrome (AIBWS) Piazza Turati, 3, 21029, Vergiate (VA), Italy
| | - Guido Cocchi
- Alma Mater Studiorum, Bologna University, Paediatric Department, Neonatology Unit, Via Massarenti 11, 40138 Bologna BO, Italy
| | - Carole Coze
- Aix-Marseille Univ et Assistance Publique Hôpitaux de Marseille (APHM), Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, 264 Rue Saint Pierre, 13385 Marseille, France
| | - Maurizio De Pellegrin
- Pediatric Orthopaedic Unit IRCCS Ospedale San Raffaele, Milan, Via Olgettina Milano, 60, 20132 Milano MI, Italy
| | - Khalid Hussain
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medical and Research Center, Al Gharrafa Street, Ar-Rayyan, Doha, Qatar
| | - Abdulla Ibrahim
- Department of Plastic and Reconstructive Surgery, North Bristol National Health Service (NHS) Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark D Kilby
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Edgbaston, Birmingham, B15 2TG, UK
| | | | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1 30625, Hannover, Germany
| | - Edmund J Ladusans
- Department of Paediatric Cardiology, Royal Manchester Children's Hospital, Manchester, M13 8WL UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Yves Le Bouc
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, PO Box 7057 1007 MB Amsterdam, The Netherlands
| | - Fiona Macdonald
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's National Health Service (NHS) Foundation Trust, Birmingham, B15 2TG UK
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, L. Puusepa 2, 51014, Tartu, Estonia
| | - Licia Peruzzi
- European Society for Paediatric Nephrology (ESPN), Inherited Kidney Disorders Working Group
- AOU Città della Salute e della Scienza di Torino, Regina Margherita Children's Hospital, Turin, Italy
| | - Sylvie Rossignol
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Laboratoire de Génétique Médicale, INSERM U1112 Avenue Molière 67098 STRASBOURG Cedex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 4 Rue Kirschleger, 67000 Strasbourg, France
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano, Milan, Italy
| | - Caroleen Shipster
- Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, WC1N 3JH, UK
| | - Agata Skórka
- Department of Medical Genetics, The Children's Memorial Health Institute, 20, 04-730, Warsaw, Poland
- Department of Pediatrics, The Medical University of Warsaw, Zwirki i Wigury 63a, 02-091 Warszawa, Poland
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service and St George's University of London and Institute of Cancer Research, London, SW17 0RE, UK
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Chiara Tortora
- Regional Center for CLP, Smile House, San Paolo University Hospital, Via Antonio di Rudinì, 8, 20142, Milan, Italy
| | - Karen Grønskov
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Irène Netchine
- Sorbonne Université, Pierre and Marie Curie-Paris VI University (UPMC) Université Paris 06, INSERM UMR_S938 Centre de Recherche Saint-Antoine (CRSA), APHP Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, 26 Avenue du Docteur Arnold Netter, F-75012 Paris, France
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, Amsterdam, The Netherlands
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, D-55101, Mainz, Germany
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University of Aachen, Templergraben 55, 52062, Aachen, Germany
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrea Riccio
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta and Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111,80131, Naples, Italy
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
4
|
Wang Q, Geng Q, Zhou Q, Luo F, Li P, Xie J. De novo paternal origin duplication of chromosome 11p15.5: report of two Chinese cases with Beckwith-Wiedemann syndrome. Mol Cytogenet 2017; 10:46. [PMID: 29270226 PMCID: PMC5738159 DOI: 10.1186/s13039-017-0347-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background The molecular etiology of Beckwith-Wiedemann syndrome (BWS) is complex and heterogeneous. Several subtypes of epigenetic-genetic alterations including aberrant methylation patterns, segmental uniparental disomy, single gene mutations, and copy number changes have been described. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS. Case presentation We reported two Chinese cases with BWS detected by genome-wide copy number analysis and locus-specific methylation profiling. Prenatal analysis on cord blood of patient 1 showed a de novo paternal origin duplication spanning 896Kb at 11p15.5. Patient 2 was referred at 2-month old and the genetic analysis showed a de novo 228.8Kb deletion at 11p15.5 telomeric end and a de novo duplication of 2.5 Mb at 11p15.5–15.4. Both the duplications are of paternal origin with gain of methylation at the imprinting center 1 and thus belong to the subgroup of a low tumor risk. Conclusion Results from these two cases and other reported cases from literature indicated that paternally derived duplications at 11p15.5 region cause BWS. Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this subtype of BWS. Characterization of genetic defects in BWS patients could lead to better understanding the genetic mechanisms of this clinically and genetically heterogeneous disorder.
Collapse
Affiliation(s)
- Qin Wang
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| | - Qian Geng
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| | - Qinghua Zhou
- First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong China
| | - Fuwei Luo
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| | - Peining Li
- Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Jiansheng Xie
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong 518028 China
| |
Collapse
|
5
|
Heide S, Chantot-Bastaraud S, Keren B, Harbison MD, Azzi S, Rossignol S, Michot C, Lackmy-Port Lys M, Demeer B, Heinrichs C, Newfield RS, Sarda P, Van Maldergem L, Trifard V, Giabicani E, Siffroi JP, Le Bouc Y, Netchine I, Brioude F. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet 2017; 55:205-213. [PMID: 29223973 DOI: 10.1136/jmedgenet-2017-104919] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/11/2017] [Accepted: 11/04/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.
Collapse
Affiliation(s)
- Solveig Heide
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Sandra Chantot-Bastaraud
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Boris Keren
- Département de Génétique, APHP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Salah Azzi
- Nuclear Dynamics ISPG, Babraham Institute, Cambridge, UK
| | - Sylvie Rossignol
- Service de Pédiatrie 1, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Caroline Michot
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - Marilyn Lackmy-Port Lys
- Unité de Génétique Clinique, Centre de Compétences Maladies Rares Anomalies du développement, Centre Hospitalier Universitaire Pointe-a-Pitre Abymes, Pointe-a-Pitre, France
| | - Bénédicte Demeer
- Service de Génétique Clinique et Oncogénétique, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France
| | - Claudine Heinrichs
- Service d'Endocrinologie Pédiatrique, Queen Fabiola Children's University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ron S Newfield
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California San Diego, San Diego, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Pierre Sarda
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Lionel Van Maldergem
- CHU, Centre de Génétique Humaine Besançon, Université de Franche-Comté, Besançon, France
| | - Véronique Trifard
- Service de Pédiatrie, CH de La Roche sur Yon, La Roche sur Yon, France
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Jean-Pierre Siffroi
- Département de Génétique, APHP, Hôpital Armand-Trousseau, UF de Génétique Chromosomique, Paris, France
| | - Yves Le Bouc
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est, Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, Paris, France.,INSERM UMR_S938, Centre de Recherche Saint Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
6
|
Jurkiewicz D, Kugaudo M, Skórka A, Śmigiel R, Smyk M, Ciara E, Chrzanowska K, Krajewska-Walasek M. A novelIGF2/H19domain triplication in the 11p15.5 imprinting region causing either Beckwith-Wiedemann or Silver-Russell syndrome in a single family. Am J Med Genet A 2016; 173:72-78. [DOI: 10.1002/ajmg.a.37964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/22/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Dorota Jurkiewicz
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | - Monika Kugaudo
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
- Department of Child and Adolescent Psychiatry; Medical University of Warsaw; Warsaw Poland
| | - Agata Skórka
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
- Department of Pediatrics; Medical University of Warsaw; Warsaw Poland
| | - Robert Śmigiel
- Department of Pediatrics; Wroclaw Medical University; Wroclaw Poland
| | - Marta Smyk
- Department of Medical Genetics; Institute of Mother and Child; Warsaw Poland
| | - Elżbieta Ciara
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | - Krystyna Chrzanowska
- Department of Medical Genetics; Children's Memorial Health Institute; Warsaw Poland
| | | |
Collapse
|
7
|
Õunap K. Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome: Opposite Phenotypes with Heterogeneous Molecular Etiology. Mol Syndromol 2016; 7:110-21. [PMID: 27587987 DOI: 10.1159/000447413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 clinically opposite growth-affecting disorders belonging to the group of congenital imprinting disorders. The expression of both syndromes usually depends on the parental origin of the chromosome in which the imprinted genes reside. SRS is characterized by severe intrauterine and postnatal growth retardation with various additional clinical features such as hemihypertrophy, relative macrocephaly, fifth finger clinodactyly, and triangular facies. BWS is an overgrowth syndrome with many additional clinical features such as macroglossia, organomegaly, and an increased risk of childhood tumors. Both SRS and BWS are clinically and genetically heterogeneous, and for clinical diagnosis, different diagnostic scoring systems have been developed. Six diagnostic scoring systems for SRS and 4 for BWS have been previously published. However, neither syndrome has common consensus diagnostic criteria yet. Most cases of SRS and BWS are associated with opposite epigenetic or genetic abnormalities in the 11p15 chromosomal region leading to opposite imbalances in the expression of imprinted genes. SRS is also caused by maternal uniparental disomy 7, which is usually identified in 5-10% of the cases, and is therefore the first imprinting disorder that affects 2 different chromosomes. In this review, we describe in detail the clinical diagnostic criteria and scoring systems as well as molecular causes in both SRS and BWS.
Collapse
Affiliation(s)
- Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, and Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Cytrynbaum C, Chong K, Hannig V, Choufani S, Shuman C, Steele L, Morgan T, Scherer SW, Stavropoulos DJ, Basran RK, Weksberg R. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell-Silver syndrome. Am J Med Genet A 2016; 170:2731-9. [PMID: 27374371 DOI: 10.1002/ajmg.a.37819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 11/07/2022]
Abstract
Russell-Silver syndrome is a heterogeneous disorder characterized by intrauterine growth retardation, postnatal growth deficiency, characteristic facial appearance, and other variable features. Genetic and epigenetic alterations are identified in about 60% of individuals with Russell-Silver syndrome. Most frequently, Russell-Silver syndrome is caused by altered gene expression on chromosome 11p15 due to loss of methylation at the telomeric imprinting center. To date there have been a handful of isolated clinical reports implicating the centromeric imprinting center 2 in the etiology of Russell-Silver syndrome. Here we report three new families with genomic imbalances, involving imprinting center 2 resulting in gain of methylation at this center and a Russell-Silver syndrome phenotype, including two families with a maternally inherited microduplication and the first pediatric patient with a paternally derived microdeletion. The findings in our families provide additional evidence of a role for imprinting center 2 in the etiology of Russell-Silver syndrome and suggest that imprinting center 2 imprinting abnormalities may be a more common cause of Russell-Silver syndrome than previously recognized. Furthermore, our findings together with previous clinical reports of genomic imbalances involving imprinting center 2 serve to underscore the complexity of the epigenetic regulation of the 11p15 region making it challenging to predict phenotype on the basis of genotype alone. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl Cytrynbaum
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pediatrics and Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Vickie Hannig
- Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Shuman
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leslie Steele
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Morgan
- Division of Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Paediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raveen K Basran
- Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Paediatric Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Boonen SE, Freschi A, Christensen R, Valente FM, Lildballe DL, Perone L, Palumbo O, Carella M, Uldbjerg N, Sparago A, Riccio A, Cerrato F. Two maternal duplications involving the CDKN1C gene are associated with contrasting growth phenotypes. Clin Epigenetics 2016; 8:69. [PMID: 27313795 PMCID: PMC4910218 DOI: 10.1186/s13148-016-0236-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/08/2016] [Indexed: 01/20/2023] Open
Abstract
Background The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the undergrowth-associated Silver-Russell syndrome (SRS) are characterized by heterogeneous molecular defects affecting a large imprinted gene cluster at chromosome 11p15.5-p15.4. While maternal and paternal duplications of the entire cluster consistently result in SRS and BWS, respectively, the phenotypes associated with smaller duplications are difficult to predict due to the complexity of imprinting regulation. Here, we describe two cases with novel inherited partial duplications of the centromeric domain on chromosome 11p15 associated with contrasting growth phenotypes. Findings In a male patient affected by intrauterine growth restriction and postnatal short stature, we identified an in cis maternally inherited duplication of 0.88 Mb including the CDKN1C gene that was significantly up-regulated. The duplication did not include the long non-coding RNA KCNQ1OT1 nor the imprinting control region of the centromeric domain (KCNQ1OT1:TSS-DMR or ICR2) in which methylation was normal. In the mother, also referring a growth restriction phenotype in her infancy, the duplication was de novo and present on her paternal chromosome. A different in cis maternal duplication, 1.13 Mb long and including the abovementioned duplication, was observed in a child affected by Tetralogy of Fallot but with normal growth. In this case, the rearrangement also included most of the KCNQ1OT1 gene and resulted in ICR2 loss of methylation (LOM). In this second family, the mother carried the duplication on her paternal chromosome and showed a normal growth phenotype as well. Conclusions We report two novel in cis microduplications encompassing part of the centromeric domain of the 11p15.5-p15.4 imprinted gene cluster and both including the growth inhibitor CDKN1C gene. Likely, as a consequence of the differential involvement of the regulatory KCNQ1OT1 RNA and ICR2, the smaller duplication is associated with growth restriction on both maternal and paternal transmissions, while the larger duplication, although it includes the smaller one, does not result in any growth anomaly. Our study provides further insights into the phenotypes associated with imprinted gene alterations and highlights the importance of carefully evaluating the affected genes and regulatory elements for accurate genetic counselling of the 11p15 chromosomal rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea Freschi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Federica Maria Valente
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | | | | | - Orazio Palumbo
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Massimo Carella
- Unità di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Angela Sparago
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Andrea Riccio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy.,Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche CNR, Napoli, Italy
| | - Flavia Cerrato
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| |
Collapse
|
10
|
Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome. PLoS Genet 2016; 12:e1005916. [PMID: 26963625 PMCID: PMC4786089 DOI: 10.1371/journal.pgen.1005916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to generate body heat, providing a valid explanation for the persistence of thinness in our model and supporting a major role for elevated CDKN1C in SRS. Silver Russell syndrome is a severe developmental disorder characterised by low birth weight, sparing of the head and neonatal hypoglycemia. SRS adults are small and can be extremely thin, lacking body fat. Numerous genetic and epigenetic mutations have been linked to SRS primarily involving imprinted genes, but progress has been hampered by the lack of a suitable animal model. Here we describe a mouse model of the rare micro duplications reported in some SRS patients, which recapitulated many of the defining features of SRS, including extreme thinness. We showed that these mice possessed substantially more of the energy consuming brown adipose tissue (BAT), driven by a double dose of the imprinted Cdkn1c gene. We further show that Cdkn1c is required for the postranscriptional accumulation of the BAT determinant PRDM16 and that these proteins co-localise to the nucleus of in a rare label-retaining cell within BAT. These data suggest that Cdkn1c contributes to the development of BAT by modulating PRDM16 and supports a major role for this gene in SRS.
Collapse
Affiliation(s)
| | - Simon J. Tunster
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Steven Millership
- MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | - Lindsay Benson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stuart Peirson
- Nuffield Department of Clinical Neuroscience, Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mark Christian
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Vals MA, Kahre T, Mee P, Muru K, Kallas E, Žilina O, Tillmann V, Õunap K. Familial 1.3-Mb 11p15.5p15.4 Duplication in Three Generations Causing Silver-Russell and Beckwith-Wiedemann Syndromes. Mol Syndromol 2015; 6:147-51. [PMID: 26732610 DOI: 10.1159/000437061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/07/2023] Open
Abstract
Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 opposite growth-affecting disorders. The common molecular cause for both syndromes is an abnormal regulation of genes in chromosomal region 11p15, where 2 imprinting control regions (ICR) control fetal and postnatal growth. Also, many submicroscopic chromosomal disturbances like duplications in 11p15 have been described among SRS and BWS patients. Duplications involving both ICRs cause SRS or BWS, depending on which parent the aberration is inherited from. We describe to our knowledge the smallest familial pure 1.3-Mb duplication in chromosomal region 11p15.5p15.4 that involves both ICRs and is present in 3 generations causing an SRS or BWS phenotype.
Collapse
Affiliation(s)
- Mari-Anne Vals
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Pille Mee
- United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Eha Kallas
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Genetics, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Bruno C, Carmignac V, Netchine I, Choux C, Duffourd Y, Faivre L, Thauvin-Robinet C, Le Bouc Y, Sagot P, Bourc'his D, Fauque P. Germline correction of an epimutation related to Silver-Russell syndrome. Hum Mol Genet 2015; 24:3314-21. [DOI: 10.1093/hmg/ddv079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
|
13
|
Abstract
The adrenal gland consists of two distinct parts, the cortex and the medulla. Molecular mechanisms controlling differentiation and growth of the adrenal gland have been studied in detail using mouse models. Knowledge also came from investigations of genetic disorders altering adrenal development and/or function. During embryonic development, the adrenal cortex acquires a structural and functional zonation in which the adrenal cortex is divided into three different steroidogenic zones. Significant progress has been made in understanding adrenal zonation. Recent lineage tracing experiments have accumulated evidence for a centripetal differentiation of adrenocortical cells from the subcapsular area to the inner part of the adrenal cortex. Understanding of the mechanism of adrenocortical cancer (ACC) development was stimulated by knowledge of adrenal gland development. ACC is a rare cancer with a very poor overall prognosis. Abnormal activation of the Wnt/β-catenin as well as the IGF2 signaling plays an important role in ACC development. Studies examining rare genetic syndromes responsible for familial ACT have played an important role in identifying genetic alterations in these tumors (like TP53 or CTNNB1 mutations as well as IGF2 overexpression). Recently, genomic analyses of ACT have shown gene expression profiles associated with malignancy as well as chromosomal and methylation alterations in ACT and exome sequencing allowed to describe the mutational landscape of these tumors. This progress leads to a new classification of these tumors, opening new perspectives for the diagnosis and prognostication of ACT. This review summarizes current knowledge of adrenocortical development, growth, and tumorigenesis.
Collapse
Affiliation(s)
- Lucile Lefèvre
- Inserm, U1016, Institut Cochin, Paris, France Cnrs, UMR8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, France Department of Endocrinology, Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | | | | |
Collapse
|
14
|
Silver-Russell syndrome without body asymmetry in three patients with duplications of maternally derived chromosome 11p15 involving CDKN1C. J Hum Genet 2014; 60:91-5. [PMID: 25427884 DOI: 10.1038/jhg.2014.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 11/08/2022]
Abstract
We report duplications of maternally derived chromosome 11p15 involving CDKN1C encoding a negative regulator for cell proliferation in three Japanese patients (cases 1 and 2 from family A and case 3 from family B) with Silver-Russell syndrome (SRS) phenotype lacking hemihypotrophy. Chromosome analysis showed 46,XX,der(16)t(11;16)(p15.3;q24.3)mat in case 1, 46,XY,der(16)t(11;16)(p15.3;q24.3)mat in case 2 and a de novo 46,XX,der(17)t(11;17)(p15.4;q25.3) in case 3. Genomewide oligonucleotide-based array comparative genomic hybridization, microsatellite analysis, pyrosequencing-based methylation analysis and direct sequence analysis revealed the presence of maternally derived extra copies of the distal chromosome 11p involving the wild-type CDKN1C (a ~7.98 Mb region in cases 1 and 2 and a ~4.43 Mb region in case 3). The results, in conjunction with the previous findings in patients with similar duplications encompassing CDKN1C and in those with intragenic mutations of CDKN1C, imply that duplications of CDKN1C, as well as relatively mild gain-of-function mutations of CDKN1C lead to SRS subtype that usually lack hemihypotrophy.
Collapse
|
15
|
Brown LA, Rupps R, Peñaherrera MS, Robinson WP, Patel MS, Eydoux P, Boerkoel CF. A cryptic familial rearrangement of 11p15.5, involving both imprinting centers, in a family with a history of short stature. Am J Med Genet A 2014; 164A:1587-94. [DOI: 10.1002/ajmg.a.36490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Lindsay A. Brown
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | - Rosemarie Rupps
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Maria S. Peñaherrera
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
- Child & Family Research Institute; Vancouver Canada
| | - Wendy P. Robinson
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
- Child & Family Research Institute; Vancouver Canada
| | - Millan S. Patel
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | | |
Collapse
|
16
|
Fokstuen S, Kotzot D. Chromosomal rearrangements in patients with clinical features of Silver-Russell syndrome. Am J Med Genet A 2014; 164A:1595-605. [PMID: 24664587 DOI: 10.1002/ajmg.a.36464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/21/2013] [Indexed: 01/29/2023]
Abstract
Silver-Russell syndrome (SRS) is characterized by pre- and postnatal growth retardation, relative macrocephaly, asymmetry, and a triangular facial gestalt. In 5-10% of the patients the phenotype is caused by maternal UPD 7, and 38-64% of the patients present with hypomethylation at the imprinting center region 1 (ICR1) on 11p15.5. The etiology of the remaining cases is so far not known and various (sub-)microscopic chromosome aberrations with a phenotype resembling SRS have been published, especially duplication 11p15 (n = 15), deletion 12q14 (n = 19), ring chromosome 15, deletion 15qter, and various other mostly unique chromosomal aberrations (n = 30). In this study the phenotypes of these chromosomal aberrations were revisited and compared with the phenotypes of maternal UPD 7 and hypomethylation at ICR1 on 11p15.5. In some patients with a unique chromosomal aberration even the hallmarks of SRS were missing. Patients with duplication 11p15 show a more variable occipitofrontal head circumference at birth, a higher frequency of intellectual disability, and additional anomalies not reported in SRS. Deletion 12q14 is characterized by less severe pre- and postnatal growth retardation and less impressive relative macrocephaly. Patients with ring chromosome 15 and deletion 15qter have no relative macrocephaly (mostly even microcephaly) and more severe intellectual disability. Finally, deletion 15qter lacks the triangular facial gestalt. In summary, as SRS seems not an adequate diagnosis in many of these patients, diagnosis should focus on the chromosomal aberration than on SRS.
Collapse
Affiliation(s)
- Siv Fokstuen
- Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
17
|
Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21:30-8. [PMID: 24322424 DOI: 10.1097/med.0000000000000037] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The imprinted human 11p15.5 region encompasses two imprinted domains important for the control of fetal growth: the H19/IGF2 domain in the telomeric region and the KCNQ1OT1/CDKN1C domain in the centromeric region. These two domains are differentially methylated and each is regulated by its own imprinting control region (ICR): ICR1 in the telomeric region and ICR2 in the centromeric region. Aberrant methylation of the 11p15.5 imprinted region, through genetic or epigenetic mechanisms, leads to two clinical syndromes, with opposite growth phenotypes: Russell-Silver Syndrome (RSS; with severe fetal and postnatal growth retardation) and Beckwith-Wiedemann Syndrome (BWS; an overgrowth syndrome). RECENT FINDINGS In this review, we discuss the recently identified molecular abnormalities at 11p15.5 involved in RSS and BWS, which have led to the identification of cis-acting elements and trans-acting regulatory factors involved in the regulation of imprinting in this region. We also discuss the multilocus imprinting disorders identified in various human syndromes, their clinical outcomes and their impact on commonly identified metabolism disorders. SUMMARY These new findings and progress in this field will have direct consequence for diagnostic and predictive tools, risk assessment and genetic counseling for these syndromes.
Collapse
Affiliation(s)
- Salah Azzi
- aAP-HP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes bUPMC Paris 6, UMR_S938, Centre de Recherche de Saint-Antoine cINSERM, UMR_S938, Centre de Recherche de Saint-Antoine, Paris, France
| | | | | |
Collapse
|
18
|
Baskin B, Choufani S, Chen YA, Shuman C, Parkinson N, Lemyre E, Micheil Innes A, Stavropoulos DJ, Ray PN, Weksberg R. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet 2013; 133:321-30. [PMID: 24154661 DOI: 10.1007/s00439-013-1379-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/05/2013] [Indexed: 01/20/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.
Collapse
Affiliation(s)
- Berivan Baskin
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Putoux A, Labalme A, André JM, Till M, Schluth-Bolard C, Berard J, Bertrand Y, Edery P, Putet G, Sanlaville D. Jacobsen and Beckwith-Wiedemann syndromes in a child with mosaicism for partial 11pter trisomy and partial 11qter monosomy. Am J Med Genet A 2013; 161A:331-7. [DOI: 10.1002/ajmg.a.35708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 12/24/2022]
|
20
|
Hu J, Sathanoori M, Kochmar S, Madan-Khetarpal S, McGuire M, Surti U. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11. Am J Med Genet A 2012; 161A:179-84. [DOI: 10.1002/ajmg.a.35658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
|
21
|
Begemann M, Spengler S, Gogiel M, Grasshoff U, Bonin M, Betz RC, Dufke A, Spier I, Eggermann T. Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. J Med Genet 2012; 49:547-53. [PMID: 22844132 PMCID: PMC3439641 DOI: 10.1136/jmedgenet-2012-100967] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the clusters of imprinted genes in humans, one of the most relevant regions involved in human growth is localised in 11p15. Opposite epigenetic and genomic disturbances in this chromosomal region contribute to two distinct imprinting disorders associated with disturbed growth, Silver-Russell and Beckwith-Wiedemann syndromes. Due to the complexity of the 11p15 imprinting regions and their interactions, the interpretation of the copy number variations in that region is complicated. The clinical outcome in case of microduplications or microdeletions is therefore influenced by the size, the breakpoint positions and the parental inheritance of the imbalance as well as by the imprinting status of the affected genes. Based on their own new cases and those from the literature, the authors give an overview on the genotype-phenotype correlation in chromosomal rearrangements in 11p15 as the basis for a directed genetic counselling. The detailed characterisation of patients and families helps to further delineate risk figures for syndromes associated with 11p15 disturbances. Furthermore, these cases provide us with profound insights in the complex regulation of the (imprinted) factors localised in 11p15.
Collapse
|
22
|
Robberecht C, Pexsters A, Deprest J, Fryns JP, D'Hooghe T, Vermeesch JR. Cytogenetic and morphological analysis of early products of conception following hystero-embryoscopy from couples with recurrent pregnancy loss. Prenat Diagn 2012; 32:933-42. [PMID: 22763612 DOI: 10.1002/pd.3936] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/11/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Our knowledge about miscarriages mainly concerns pregnancies of at least 8 weeks' gestation. Information about the morphology and the genetic determinants of early aborted embryos remains limited. In addition, it is known that aneuploidies account for less than half of recurrent spontaneous abortions. We hypothesized that (recurrent) early pregnancy losses might have other genetic causes. METHOD Products of conception from 51 couples with at least one previous miscarriage were collected by hystero-embryoscopy. The extracted DNA was analyzed by low resolution array comparative genomic hybridization and high resolution single nucleotide polymorphism arrays to detect aneuploidies, polyploidies, submicroscopic copy number variants or copy neutral loss of heterozygosity. RESULTS Chromosomal aberrations were identified in 65.6% (21/32) of miscarriages and in 89% (8/9) of anembryonic cases. Interestingly, 4/11 chromosomally euploid embryos contained regions of loss of heterozygosity >5 Mb, suggesting the miscarriages might be due to an underlying lethal recessive disease. CONCLUSION Hystero-embryoscopic biopsy followed by array comparative genomic hybridization is a valuable diagnostic tool for early and recurrent miscarriages. Genome-wide high resolution single nucleotide polymorphism microarray analysis of a larger group of miscarriages could provide more insight into the genetic causes of recurrent spontaneous abortion.
Collapse
|
23
|
Demars J, Gicquel C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin Genet 2012; 81:350-61. [PMID: 22150955 DOI: 10.1111/j.1399-0004.2011.01822.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Genomic imprinting is a particularly attractive example of epigenetic regulation leading to the parental-origin-specific expression of genes. In several ways, the 11p15 imprinted region is an exemplary model for regulation of genomic imprinting. The two imprinted domains are controlled by imprinting control regions (ICRs) which carry opposite germ line imprints and they are regulated by two major mechanisms of imprinting control. Dysregulation of 11p15 genomic imprinting results in two fetal growth disorders [Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes], with opposite growth phenotypes. BWS and SRS result from abnormal imprinting involving either, both domains or only one of them, with ICR1 and ICR2 more often involved in SRS and BWS respectively. DNA methylation defects affecting ICR1 or ICR2 account for approximately 60% of SRS and BWS patients. Recent studies have identified new cis-acting regulatory elements, as well as new trans-acting factors involved in the regulation of 11p15 imprinting, therefore establishing new mechanisms of BWS and SRS. Those studies also showed that, apart of CTCF, other transcription factors, including factors of the pluripotency network, play a crucial role in the regulation of 11p15 genomic imprinting. Those new findings have direct consequences in molecular testing, risk assessment and genetic counseling of BWS and SRS patients.
Collapse
Affiliation(s)
- J Demars
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | | |
Collapse
|
24
|
Sofos E, Pescosolido MF, Quintos JB, Abuelo D, Gunn S, Hovanes K, Morrow EM, Shur N. A novel familial 11p15.4 microduplication associated with intellectual disability, dysmorphic features, and obesity with involvement of the ZNF214 gene. Am J Med Genet A 2011; 158A:50-8. [PMID: 22052655 DOI: 10.1002/ajmg.a.34290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/27/2011] [Indexed: 11/07/2022]
Abstract
We evaluated a patient with mild intellectual disability, obesity, overgrowth, and dysmorphic features. Array comparative genomic hybridization (aCGH) analysis showed a single copy number increase of a BAC clone in the 11p15.4 region. Oligonucleotide aCGH refined the duplication to approximately 2.29 megabases (Mb) in size. Testing the parents revealed that the father, who had learning disabilities and overgrowth, also had the 11p15.4 duplication, and the mother had a normal microarray. In addition, the patient's brother and grandmother all share clinical features with the proband and tested positive for the duplication. The duplicated region (Chr11:6,934,067-9,220,605) encompasses 29 genes, including the ZNF214 gene, which has been postulated to play a role in Beckwith-Wiedemann syndrome [Alders et al., 2000]. This three-generation pedigree outlines features of a novel microduplication syndrome.
Collapse
Affiliation(s)
- Elvera Sofos
- Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, Mussa A, Sparago A, Cerrato F, Russo S, Lapi E, Cubellis MV, Kanduri C, Cirillo Silengo M, Riccio A, Ferrero GB. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet 2011; 21:10-25. [PMID: 21920939 PMCID: PMC3235007 DOI: 10.1093/hmg/ddr419] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.
Collapse
Affiliation(s)
- Nicoletta Chiesa
- Dipartimento di Scienze Pediatriche e dell’Adolescenza, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bonaldi A, Mazzeu JF, Costa SS, Honjo RS, Bertola DR, Albano LMJ, Furquim IM, Kim CA, Vianna-Morgante AM. Microduplication of the ICR2 domain at chromosome 11p15 and familial Silver-Russell syndrome. Am J Med Genet A 2011; 155A:2479-83. [PMID: 21910219 DOI: 10.1002/ajmg.a.34023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/09/2011] [Indexed: 11/10/2022]
Abstract
Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth retardation in association with a typical small triangular face and other variable features. Genetic and epigenetic disturbances are detected in about 50% of the patients. Most frequently, SRS is caused by altered gene expression on chromosome 11p15 due to hypomethylation of the telomeric imprinting center (ICR1) that is present in at least 40% of the patients. Maternally inherited duplications encompassing ICR1 and ICR2 domains at 11p15 were found in a few patients, and a microduplication restricted to ICR2 was described in a single SRS child. We report on a microduplication of the ICR2 domain encompassing the KCNQ1, KCNQ1OT1, and CDKN1C genes in a three-generation family: there were four instances of paternal transmissions of the microduplication from a single male uniformly resulting in normal offspring, and five maternal transmissions, via two clinically normal sisters, with all the children exhibiting SRS. This report provides confirmatory evidence that a microduplication restricted to the ICR2 domain results in SRS when maternally transmitted.
Collapse
Affiliation(s)
- Adriano Bonaldi
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Demars J, Rossignol S, Netchine I, Lee KS, Shmela M, Faivre L, Weill J, Odent S, Azzi S, Callier P, Lucas J, Dubourg C, Andrieux J, Le Bouc Y, El-Osta A, Gicquel C. New insights into the pathogenesis of Beckwith-Wiedemann and Silver-Russell syndromes: contribution of small copy number variations to 11p15 imprinting defects. Hum Mutat 2011; 32:1171-82. [PMID: 21780245 DOI: 10.1002/humu.21558] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/12/2011] [Indexed: 01/28/2023]
Abstract
The imprinted 11p15 region is organized in two domains, each of them under the control of its own imprinting control region (ICR1 for the IGF2/H19 domain and ICR2 for the KCNQ1OT1/CDKN1C domain). Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes. Various 11p15 genetic and epigenetic defects have been demonstrated in BWS and SRS. Among them, isolated DNA methylation defects account for approximately 60% of patients. To investigate whether cryptic copy number variations (CNVs) involving only part of one of the two imprinted domains account for 11p15 isolated DNA methylation defects, we designed a single nucleotide polymorphism array covering the whole 11p15 imprinted region and genotyped 185 SRS or BWS cases with loss or gain of DNA methylation at either ICR1 or ICR2. We describe herein novel small gain and loss CNVs in six BWS or SRS patients, including maternally inherited cis-duplications involving only part of one of the two imprinted domains. We also show that ICR2 deletions do not account for BWS with ICR2 loss of methylation and that uniparental isodisomy involving only one of the two imprinted domains is not a mechanism for SRS or BWS.
Collapse
Affiliation(s)
- Julie Demars
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eggermann T, Spengler S, Begemann M, Binder G. Silver-Russell-Kleinwuchs. Monatsschr Kinderheilkd 2011. [DOI: 10.1007/s00112-011-2386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Does Genomic Imprinting Play a Role in Autoimmunity? EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:103-16. [DOI: 10.1007/978-1-4419-8216-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Eggermann T. Russell-Silver syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:355-64. [DOI: 10.1002/ajmg.c.30274] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Cardarelli L, Sparago A, De Crescenzo A, Nalesso E, Zavan B, Cubellis MV, Selicorni A, Cavicchioli P, Pozzan GB, Petrella M, Riccio A. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family. Pediatr Dev Pathol 2010; 13:326-30. [PMID: 20028213 DOI: 10.2350/09-07-0686-cr.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic imprinting is an epigenetic phenomenon resulting in differential expression of maternal and paternal alleles of a subset of genes. In the mouse, mutation of imprinted genes often results in contrasting phenotypes, depending on parental origin. The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the growth restriction-associated Silver-Russell syndrome (SRS) have been linked with a variety of epigenetic and genetic defects affecting a cluster of imprinted genes at chromosome 11p15.5. Paternally derived and maternally derived 11p15.5 duplications represent infrequent findings in BWS and SRS, respectively. Here, we report a case in which a 6.5 Mb duplication of 11p15.4-pter resulted in SRS and BWS phenotypes in a child and her mother, respectively. Molecular analyses demonstrated that the duplication involved the maternal chromosome 11p15 in the child and the paternal chromosome 11p15 in the mother. This observation provides a direct demonstration that SRS and BWS represent specular images, both at the clinical and molecular levels.
Collapse
Affiliation(s)
- Laura Cardarelli
- Laboratorio Analisi CITOTEST, Consorzio GENiMED, Sarmeola di Rubano (PD), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|