1
|
Uehara DT, Hayashi S, Okamoto N, Mizuno S, Chinen Y, Kosaki R, Kosho T, Kurosawa K, Matsumoto H, Mitsubuchi H, Numabe H, Saitoh S, Makita Y, Hata A, Imoto I, Inazawa J. SNP array screening of cryptic genomic imbalances in 450 Japanese subjects with intellectual disability and multiple congenital anomalies previously negative for large rearrangements. J Hum Genet 2016; 61:335-43. [PMID: 26740234 DOI: 10.1038/jhg.2015.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/30/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022]
Abstract
Intellectual disability (ID) is a heterogeneous condition affecting 2-3% of the population, often associated with multiple congenital anomalies (MCA). The genetic cause remains largely unexplained for most cases. To investigate the causes of ID/MCA of unknown etiology in the Japanese population, 645 subjects have been recruited for the screening of pathogenic copy-number variants (CNVs). Two screenings using bacterial artificial chromosome (BAC) arrays were previously performed, which identified pathogenic CNVs in 133 cases (20.6%; Hayashi et al., J. Hum. Genet., 2011). Here, we present the findings of the third screening using a single-nucleotide polymorphism (SNP) array, performed in 450 negative cases from our previous report. Pathogenic CNVs were found in 22 subjects (4.9%), in which 19 CNVs were located in regions where clinical significance had been previously established. Among the 22 cases, we identified PPFIA2 as a novel candidate gene for ID. Analysis of copy-neutral loss of heterozygosity (CNLOH) detected one case in which the CNLOH regions seem to be significant. The SNP array detected a modest fraction of small causative CNVs, which is explained by the fact that the majority of causative CNVs have larger sizes, and those had been mostly identified in the two previous screenings.
Collapse
Affiliation(s)
- Daniela Tiaki Uehara
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shin Hayashi
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Hiroshi Mitsubuchi
- Department of Pediatrics, Kumamoto University Graduate School of Medical Science, Kumamoto, Japan
| | - Hironao Numabe
- Department of Genetic Counseling, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshio Makita
- Education Center, Asahikawa Medical University, Asahikawa, Japan
| | - Akira Hata
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Gillentine MA, Schaaf CP. The human clinical phenotypes of altered CHRNA7 copy number. Biochem Pharmacol 2015; 97:352-362. [PMID: 26095975 DOI: 10.1016/j.bcp.2015.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023]
Abstract
Copy number variants (CNVs) have been implicated in multiple neuropsychiatric conditions, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability (ID). Chromosome 15q13 is a hotspot for such CNVs due to the presence of low copy repeat (LCR) elements, which facilitate non-allelic homologous recombination (NAHR). Several of these CNVs have been overrepresented in individuals with neuropsychiatric disorders; yet variable expressivity and incomplete penetrance are commonly seen. Dosage sensitivity of the CHRNA7 gene, which encodes for the α7 nicotinic acetylcholine receptor in the human brain, has been proposed to have a major contribution to the observed cognitive and behavioral phenotypes, as it represents the smallest region of overlap to all the 15q13.3 deletions and duplications. Individuals with zero to four copies of CHRNA7 have been reported in the literature, and represent a range of clinical severity, with deletions causing generally more severe and more highly penetrant phenotypes. Potential mechanisms to account for the variable expressivity within each group of 15q13.3 CNVs will be discussed.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
3
|
D'Amours G, Langlois M, Mathonnet G, Fetni R, Nizard S, Srour M, Tihy F, Phillips MS, Michaud JL, Lemyre E. SNP arrays: comparing diagnostic yields for four platforms in children with developmental delay. BMC Med Genomics 2014; 7:70. [PMID: 25539807 PMCID: PMC4299176 DOI: 10.1186/s12920-014-0070-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Molecular karyotyping is now the first-tier genetic test for patients affected with unexplained intellectual disability (ID) and/or multiple congenital anomalies (MCA), since it identifies a pathogenic copy number variation (CNV) in 10-14% of them. High-resolution microarrays combining molecular karyotyping and single nucleotide polymorphism (SNP) genotyping were recently introduced to the market. In addition to identifying CNVs, these platforms detect loss of heterozygosity (LOH), which can indicate the presence of a homozygous mutation or uniparental disomy. Since these abnormalities can be associated with ID and/or MCA, their detection is of particular interest for patients whose phenotype remains unexplained. However, the diagnostic yield obtained with these platforms is not confirmed, and the real clinical value of LOH detection has not been established. Methods We selected 21 children affected with ID, with or without congenital malformations, for whom standard genetic analyses failed to provide a diagnosis. We performed high-resolution SNP array analysis with four platforms (Affymetrix Genome-Wide Human SNP Array 6.0, Affymetrix Cytogenetics Whole-Genome 2.7 M array, Illumina HumanOmni1-Quad BeadChip, and Illumina HumanCytoSNP-12 DNA Analysis BeadChip) on whole-blood samples obtained from children and their parents to detect pathogenic CNVs and LOHs, and compared the results with those obtained on a moderate resolution array-based comparative genomic hybridization platform (NimbleGen CGX-12 Cytogenetics Array), already used in the clinical setting. Results We identified a total of four pathogenic CNVs in three patients, and all arrays successfully detected them. With the SNP arrays, we also identified a LOH containing a gene associated with a recessive disorder consistent with the patient’s phenotype (i.e., an informative LOH) in four children (including two siblings). A homozygous mutation within the informative LOH was found in three of these patients. Therefore, we were able to increase the diagnostic yield from 14.3% to 28.6% as a result of the information provided by LOHs. Conclusions This study shows the clinical usefulness of SNP arrays in children with ID, since they successfully detect pathogenic CNVs, identify informative LOHs that can lead to the diagnosis of a recessive disorder. It also highlights some challenges associated with the use of SNP arrays in a clinical laboratory. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0070-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guylaine D'Amours
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
| | - Mathieu Langlois
- Centre de pharmacogénomique, Institut de cardiologie de Montréal, Montréal, QC, Canada.
| | | | - Raouf Fetni
- Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Département de pathologie, CHU Sainte-Justine, Montréal, QC, Canada. .,Pathologie et biologie cellulaire, Université de Montréal, Montréal, QC, Canada.
| | - Sonia Nizard
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| | - Myriam Srour
- Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada.
| | - Frédérique Tihy
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pathologie et biologie cellulaire, Université de Montréal, Montréal, QC, Canada.
| | - Michael S Phillips
- Centre de pharmacogénomique, Institut de cardiologie de Montréal, Montréal, QC, Canada.
| | - Jacques L Michaud
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| | - Emmanuelle Lemyre
- Service de génétique médicale, CHU Sainte-Justine, Montréal, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada. .,Faculté de médecine, Université de Montréal, Montréal, QC, Canada. .,Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Siggberg L, Ala-Mello S, Sirpa AM, Linnankivi T, Tarja L, Avela K, Kristiina A, Scheinin I, Ilari S, Kristiansson K, Kati K, Lahermo P, Päivi L, Hietala M, Marja H, Metsähonkala L, Liisa M, Kuusinen E, Esa K, Laaksonen M, Maarit L, Saarela J, Janna S, Khuutila S, Sakari K. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results. BMC MEDICAL GENETICS 2012; 13:84. [PMID: 22984989 PMCID: PMC3523000 DOI: 10.1186/1471-2350-13-84] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/05/2012] [Indexed: 12/02/2022]
Abstract
Background Diagnostic analysis of patients with developmental disorders has improved over recent years largely due to the use of microarray technology. Array methods that facilitate copy number analysis have enabled the diagnosis of up to 20% more patients with previously normal karyotyping results. A substantial number of patients remain undiagnosed, however. Methods and Results Using the Genome-Wide Human SNP array 6.0, we analyzed 35 patients with a developmental disorder of unknown cause and normal array comparative genomic hybridization (array CGH) results, in order to characterize previously undefined genomic aberrations. We detected no seemingly pathogenic copy number aberrations. Most of the vast amount of data produced by the array was polymorphic and non-informative. Filtering of this data, based on copy number variant (CNV) population frequencies as well as phenotypically relevant genes, enabled pinpointing regions of allelic homozygosity that included candidate genes correlating to the phenotypic features in four patients, but results could not be confirmed. Conclusions In this study, the use of an ultra high-resolution SNP array did not contribute to further diagnose patients with developmental disorders of unknown cause. The statistical power of these results is limited by the small size of the patient cohort, and interpretation of these negative results can only be applied to the patients studied here. We present the results of our study and the recurrence of clustered allelic homozygosity present in this material, as detected by the SNP 6.0 array.
Collapse
Affiliation(s)
- Linda Siggberg
- Department of Pathology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hochstenbach R, Buizer-Voskamp JE, Vorstman JAS, Ophoff RA. Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res 2011; 135:174-202. [PMID: 22056632 DOI: 10.1159/000332928] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
We review the contributions and limitations of genome-wide array-based identification of copy number variants (CNVs) in the clinical diagnostic evaluation of patients with mental retardation (MR) and other brain-related disorders. In unselected MR referrals a causative genomic gain or loss is detected in 14-18% of cases. Usually, such CNVs arise de novo, are not found in healthy subjects, and have a major impact on the phenotype by altering the dosage of multiple genes. This high diagnostic yield justifies array-based segmental aneuploidy screening as the initial genetic test in these patients. This also pertains to patients with autism (expected yield about 5-10% in nonsyndromic and 10-20% in syndromic patients) and schizophrenia (at least 5% yield). CNV studies in idiopathic generalized epilepsy, attention-deficit hyperactivity disorder, major depressive disorder and Tourette syndrome indicate that patients have, on average, a larger CNV burden as compared to controls. Collectively, the CNV studies suggest that a wide spectrum of disease-susceptibility variants exists, most of which are rare (<0.1%) and of variable and usually small effect. Notwithstanding, a rare CNV can have a major impact on the phenotype. Exome sequencing in MR and autism patients revealed de novo mutations in protein coding genes in 60 and 20% of cases, respectively. Therefore, it is likely that arrays will be supplanted by next-generation sequencing methods as the initial and perhaps ultimate diagnostic tool in patients with brain-related disorders, revealing both CNVs and mutations in a single test.
Collapse
Affiliation(s)
- R Hochstenbach
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|