1
|
Pezzini S, Mustaccia A, Aboa P, Faustini G, Branchini A, Pinotti M, Frasca A, Porter JJ, Lueck JD, Landsberger N. Engineered tRNAs efficiently suppress CDKL5 premature termination codons. Sci Rep 2024; 14:31791. [PMID: 39738338 DOI: 10.1038/s41598-024-82766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disorder characterized by early-onset epilepsy, intellectual disability, motor and visual dysfunctions. The causative gene is CDKL5, which codes for a kinase required for brain development. There is no cure for CDD patients; treatments are symptomatic and focus mainly on seizure control. Several pathogenic variants are loss-of-function, but recent studies suggest that the CDD phenotype is sensitive to the CDKL5 gene dosage. Therefore, mRNA-targeted correction strategies that respect the physiological regulation of CDKL5 could be a valid alternative to augmentative gene therapy. Nonsense mutations cause ~ 11% of CDD cases, and these patients might benefit from readthrough therapies. We proved that drug-mediated readthrough efficiently suppresses premature CDKL5 nonsense codons, but the recoded kinase remained highly hypomorphic, curtailing the translational value of this pharmacological approach. In this study we explored if the recently developed Anticodon-edited tRNAs (ACE-tRNAs) offer an alternative readthrough strategy for CDD. Transfecting cells expressing different CDKL5 nonsense variants, we demonstrated that ACE-tRNAs efficiently restore full-length kinase synthesis. The recoded CDKL5 is correctly localized and catalytically active, thereby bringing tRNA-based therapy back into the spotlight for future investigations to assess the efficacy of this approach in correcting the pathological phenotype of CDD.
Collapse
Affiliation(s)
- Stefano Pezzini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy
| | - Aurora Mustaccia
- San Raffaele Rett Research Unit, Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Pierre Aboa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy
| | - Giorgia Faustini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy
| | - Joseph J Porter
- Departments of Pharmacology and Physiology and Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - John D Lueck
- Departments of Pharmacology and Physiology and Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy.
| |
Collapse
|
2
|
Mehawej C, Maalouf JE, Abdelkhalik M, Mahfouz P, Chouery E, Megarbane A. CNV Analysis through Exome Sequencing Reveals a Large Duplication Involved in Sex Reversal, Neurodevelopmental Delay, Epilepsy and Optic Atrophy. Genes (Basel) 2024; 15:901. [PMID: 39062680 PMCID: PMC11275410 DOI: 10.3390/genes15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Duplications on the short arm of chromosome X, including the gene NR0B1, have been associated with gonadal dysgenesis and with male to female sex reversal. Additional clinical manifestations can be observed in the affected patients, depending on the duplicated genomic region. Here we report one of the largest duplications on chromosome X, in a Lebanese patient, and we provide the first comprehensive review of duplications in this genomic region. CASE PRESENTATION A 2-year-old female patient born to non-consanguineous Lebanese parents, with a family history of one miscarriage, is included in this study. The patient presents with sex reversal, dysmorphic features, optic atrophy, epilepsy, psychomotor and neurodevelopmental delay. Single nucleotide variants and copy number variants analysis were carried out on the patient through exome sequencing (ES). This showed an increased coverage of a genomic region of around 23.6 Mb on chromosome Xp22.31-p21.2 (g.7137718-30739112) in the patient, suggestive of a large duplication encompassing more than 60 genes, including the NR0B1 gene involved in sex reversal. A karyotype analysis confirmed sex reversal in the proband presenting with the duplication, and revealed a balanced translocation between the short arms of chromosomes X and 14:46, X, t(X;14) (p11;p11) in her/his mother. CONCLUSIONS This case highlights the added value of CNV analysis from ES data in the genetic diagnosis of patients. It also underscores the challenges encountered in announcing unsolicited incidental findings to the family.
Collapse
Affiliation(s)
- Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
| | - Joy El Maalouf
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Mohamad Abdelkhalik
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Peter Mahfouz
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
- Institut Jérôme Lejeune, 75015 Paris, France
| |
Collapse
|
3
|
Pottmeier P, Nikolantonaki D, Lanner F, Peuckert C, Jazin E. Sex-biased gene expression during neural differentiation of human embryonic stem cells. Front Cell Dev Biol 2024; 12:1341373. [PMID: 38764741 PMCID: PMC11101176 DOI: 10.3389/fcell.2024.1341373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Danai Nikolantonaki
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Sahajpal N, Ziats C, Chaubey A, DuPont BR, Abidi F, Schwartz CE, Stevenson RE. Clinical findings in individuals with duplication of genes associated with X-linked intellectual disability. Clin Genet 2024; 105:173-184. [PMID: 37899624 DOI: 10.1111/cge.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.
Collapse
Affiliation(s)
- Nikhil Sahajpal
- Diagnostic Laboratories, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Catherine Ziats
- Genetics Department, Shodair Children's Hospital, Helena, Montana, USA
| | - Alka Chaubey
- Clinical and Scientific Affairs, Bionano Genomics, San Diego, California, USA
| | - Barbara R DuPont
- Diagnostic Laboratories, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Fatima Abidi
- Diagnostic Laboratories, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | | |
Collapse
|
5
|
Joaquim TM, Roy SD, de Albuquerque CGP, Grangeiro CHP, Squire JA, Yoshimoto M, Martelli L. Xp22.33p22.13 Duplication in a Male Patient Carrying a Recombinant X Chromosome Derived from an Inherited Intrachromosomal Insertion. Cytogenet Genome Res 2023; 163:24-31. [PMID: 37482055 DOI: 10.1159/000532051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
Intrachromosomal insertions are complex structural rearrangements that are challenging to interpret using classical cytogenetic methods. We report a male patient carrying a recombinant X chromosome derived from a maternally inherited intrachromosomal insertion. The patient exhibited developmental delay, intellectual disability, behavioral disorder, and dysmorphic facial features. To accurately identify the rearrangements in the abnormal X chromosome, additional cytogenetic studies were conducted, including fluorescence in situ hybridization (FISH), multicolor-banding FISH, and array comparative genomic hybridization. The results showed a recombinant X chromosome, resulting in a 13.05 Mb interstitial duplication of segment Xp22.33-Xp22.13, which was inserted at cytoband Xq26.1. The duplicated region encompasses 99 genes, some of which are associated with the patient's clinical manifestations. We propose that the combined effects of the Xp-duplicated genes may contribute to the patient's phenotype.
Collapse
Affiliation(s)
- Tatiana Mozer Joaquim
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of General Biology, State University of Londrina, Londrina, Brazil
| | - Scott David Roy
- Cytogenetics Laboratory North Sector, Genetics & Genomics, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Clarissa Gondim Picanço de Albuquerque
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Henrique Paiva Grangeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jeremy A Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maisa Yoshimoto
- Cytogenetics Laboratory North Sector, Genetics & Genomics, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Lucia Martelli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Frasca A, Pavlidou E, Bizzotto M, Gao Y, Balestra D, Pinotti M, Dahl HA, Mazarakis ND, Landsberger N, Kinali M. Not Just Loss-of-Function Variations: Identification of a Hypermorphic Variant in a Patient With a CDKL5 Missense Substitution. Neurol Genet 2022; 8:e666. [PMID: 35280940 PMCID: PMC8906656 DOI: 10.1212/nxg.0000000000000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives CDKL5 deficiency disorder (CDD) is a neurodevelopmental encephalopathy characterized by early-onset epilepsy and impaired psychomotor development. Variations in the X-linked CDKL5 gene coding for a kinase cause CDD. Molecular genetics has proved that almost all pathogenic missense substitutions localize in the N-terminal catalytic domain, therefore underlining the importance for brain development and functioning of the kinase activity. CDKL5 also features a long C-terminal domain that acts as negative regulator of the enzymatic activity and modulates its subcellular distribution. CDD is generally attributed to loss-of-function variations, whereas the clinical consequences of increased CDKL5 activity remain uncertain. We have identified a female patient characterized by mild epilepsy and neurologic symptoms, harboring a novel c.2873C>G nucleotide substitution, leading to the missense variant p.(Thr958Arg). To increase our comprehension of genetic variants in CDKL5-associated neurologic disorders, we have characterized the molecular consequences of the identified substitution. Methods MRI and video EEG telemetry were used to describe brain activity and capture seizure. The Bayley III test was used to evaluate the patient development. Reverse transcriptase PCR was used to analyze whether the identified nucleotide variant affects messenger RNA stability and/or splicing. The X chromosome inactivation pattern was analyzed determining the DNA methylation status of the androgen receptor (AR) gene and by sequencing of expressed alleles. Western blotting was used to investigate whether the novel Thr958Arg substitution affects the stability and/or enzymatic activity of CDKL5. Immunofluorescence was used to define whether CDKL5 subcellular distribution is affected by the Thr958Arg substitution. Results Our data suggested that the proband tends toward a skewed X chromosome inactivation pattern in favor of the novel variant. The molecular investigation revealed that the p.(Thr958Arg) substitution leads to a significant increase in the autophosphorylation of both the TEY motif and residue Tyr171 of CDKL5, as well as in the phosphorylation of the target protein MAP1S, indicating an hyperactivation of CDKL5. This occurs without evidently affecting the kinase subcellular distribution. Discussion Our data provide a strong indication that the c.2873C>G nucleotide substitution represents an hypermorphic pathogenic variation of CDKL5, therefore highlighting the importance of a tight control of CDKL5 activity in the brain.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Efterpi Pavlidou
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Matteo Bizzotto
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Yunan Gao
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Dario Balestra
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Mirko Pinotti
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Hans Atli Dahl
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Nicholas D Mazarakis
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| | - Maria Kinali
- Department of Medical Biotechnology and Translational Medicine (A.F., M.B., N.L.), University of Milan, Italy; Department of Speech and Language Therapy (E.P.), University of Ioannina, Greece; Gene Therapy (Y.G., N.D.M.), Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, United Kingdom; Department of Life Sciences and Biotechnology (D.B., M.P.), University of Ferrara, Italy; Amplexa Genetics A/S (H.A.D.), Odense, Denmark; Department of Paediatric Neurology (M.K.), The Portland Hospital, HCA Healthcare UK; and Imperial College (M.K.), London, United Kingdom
| |
Collapse
|
7
|
Yanagishita T, Imaizumi T, Yamamoto-Shimojima K, Yano T, Okamoto N, Nagata S, Yamamoto T. Breakpoint junction analysis for complex genomic rearrangements with the caldera volcano-like pattern. Hum Mutat 2020; 41:2119-2127. [PMID: 32906213 DOI: 10.1002/humu.24108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Chromosomal triplications can be classified into recurrent and nonrecurrent triplications. Most of the nonrecurrent triplications are embedded in duplicated segments, and duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) has been established as one of the mechanisms of triplication. This study aimed to reveal the underlying mechanism of the TRP-DUP-TRP pattern of chromosomal aberrations, in which the appearance of moving averages obtained through array-based comparative genomic hybridization analysis is similar to the shadows of the caldera volcano-like pattern, which were first identified in two patients with neurodevelopmental disabilities. For this purpose, whole-genome sequencing using long-read Nanopore sequencing was carried out to confirm breakpoint junctions. Custom array analysis and Sanger sequencing were also used to detect all breakpoint junctions. As a result, the TRP-DUP-TRP pattern consisted of only two patterns of breakpoint junctions in both patients. In patient 1, microhomologies were identified in breakpoint junctions. In patient 2, more complex architectures with insertional segments were identified. Thus, replication-based mechanisms were considered as a mechanism of the TRP-DUP-TRP pattern.
Collapse
Affiliation(s)
- Tomoe Yanagishita
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Imaizumi
- Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Tamami Yano
- Department of Pediatrics, Akita University, Akita, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
8
|
R von Collenberg C, Schmitt D, Rülicke T, Sendtner M, Blum R, Buchner E. An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance. Biol Open 2019; 8:bio.042366. [PMID: 31118165 PMCID: PMC6602322 DOI: 10.1242/bio.042366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapse-associated protein 1 (Syap1) is the mammalian homologue of synapse-associated protein of 47 kDa (Sap47) in Drosophila. Genetic deletion of Sap47 leads to deficiencies in short-term plasticity and associative memory processing in flies. In mice, Syap1 is prominently expressed in the nervous system, but its function is still unclear. We have generated Syap1 knockout mice and tested motor behaviour and memory. These mice are viable and fertile but display distinct deficiencies in motor behaviour. Locomotor activity specifically appears to be reduced in early phases when voluntary movement is initiated. On the rotarod, a more demanding motor test involving control by sensory feedback, Syap1-deficient mice dramatically fail to adapt to accelerated speed or to a change in rotation direction. Syap1 is highly expressed in cerebellar Purkinje cells and cerebellar nuclei. Thus, this distinct motor phenotype could be due to a so-far unknown function of Syap1 in cerebellar sensorimotor control. The observed motor defects are highly specific since other tests in the modified SHIRPA exam, as well as cognitive tasks like novel object recognition, Pavlovian fear conditioning, anxiety-like behaviour in open field dark-light transition and elevated plus maze do not appear to be affected in Syap1 knockout mice. Summary: Knockout of the Syap1 gene in mice causes a distinct motor behaviour phenotype characterised by reduced initial locomotor activity and impaired rotarod performance.
Collapse
Affiliation(s)
- Cora R von Collenberg
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Dominique Schmitt
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| |
Collapse
|
9
|
Furey CG, Timberlake AT, Nelson-Williams C, Duran D, Li P, Jackson EM, Kahle KT. Xp22.2 Chromosomal Duplication in Familial Intracranial Arachnoid Cyst. JAMA Neurol 2019; 74:1503-1504. [PMID: 29052703 DOI: 10.1001/jamaneurol.2017.3399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Section of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, Connecticut
| | | | - Daniel Duran
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Cytogenomic characterization of 1q43q44 deletion associated with 4q32.1q35.2 duplication and phenotype correlation. Mol Cytogenet 2018; 11:57. [PMID: 30410579 PMCID: PMC6219057 DOI: 10.1186/s13039-018-0406-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Microdeletion of 1q43q44 causes a syndrome characterized by intellectual disability (ID), speech delay, seizures, microcephaly (MIC), corpus callosum abnormalities (CCA) and characteristic facial features. Duplication of 4q is presented with minor to severe ID, MIC and facial dysmorphism. We aimed to verify the correlation between genotype/phenotype in a patient with 1q43q44 deletion associated with 4q32.1q35.2 duplication. Case presentation We report on a 3 year-old female patient with delayed motor and mental milestones, MIC and facial dysmorphism. She is a child of non-consanguineous parents and no similarly affected family members. CT brain showed abnormal gyral patterns, hypogenesis of corpus callosum and bilateral deep Sylvian fissure. Electroencephalogram showed frontotemporal epileptogenic focus. Her karyotype was revealed as 46,XX,add(1)(q44). Fluorescence in situ hybridization (FISH) using whole chromosome paint (WCP1) and subtelomere 1q revealed that the add segment was not derived from chromosome 1 and there was the deletion of subtelomere 1q. Multiple ligation probe amplification (MLPA) subtelomere kit revealed the deletion of 1q and duplication of 4q. Array CGH demonstrated the 6.5 Mb deletion of 1q and 31 Mb duplication of chromosome 4q. Conclusion The phenotype of our patient mainly reflects the effects of haploinsufficiency of AKT3, HNRNPU, ZBTB18 genes associated with duplication of GLRA3, GMP6A, HAND2 genes. Patients presented with ID, seizures, MIC together with CCA are candidates for prediction of 1q43q44 microdeletion and cytogenomic analysis.
Collapse
|
11
|
Mohamed AM, Zaki MS, Kamel AK, Issa MY, Mekkawy M, Safwat P, Mazen I. Unbalanced 14;X Translocation and Pattern of X Inactivation in a Female Patient with Multiple Congenital Anomalies. Cytogenet Genome Res 2018; 156:71-79. [PMID: 30273929 DOI: 10.1159/000492546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2018] [Indexed: 11/19/2022] Open
Abstract
We report on a female patient who was first evaluated at the age of 6 years with developmental delay, dysmorphic facial features, seizures, and autistic behavior. A brain CT showed complete agenesis of the corpus callosum, and EEG recorded bilateral epileptogenic foci. Karyotype analysis revealed 45,X,psu dic(14;X)(p11;p22). FISH using 14q and Xp subtelomeric probes, combined with a SHOX gene-specific probe, and centromere X and XIST gene analysis revealed ish psu dic(14;X)(D14S1420+; DXYS129-, SHOX-, DXZ1+, XIST+). Array CGH detected a 2-Mb loss at Xp22.33 and a 4.6-Mb gain at Xp22.2p22.12. The deletion contains 34 genes, of which CSF2RA and SHOX are OMIM morbid genes. The duplication also contains some OMIM morbid genes, of which CDKL5, NH5, RPS6KA3, and AP1S2 are the most important. The late replicating chromatin technique was used to detect the pattern of X inactivation in the normal X and in the translocated chromosome. The translocated X was found to be inactive in 70% of the studied blood lymphocytes with patchy extension of inactivation to chromosome 14. In conclusion, the phenotype of the patient may be partially affected by the haploinsufficiency of the genes that are known to escape X inactivation and that lie within the deleted region and by other deleted or duplicated genes on the abnormal X chromosome due to an alternative pattern of X inactivation. The phenotype of the patient was significantly aggravated and complicated by the functional monosomy of some genes on chromosome 14 due to partial spreading of inactivation and silencing of those genes. This case report indicates the importance of structural and functional studies and emphasizes the clinical importance of the follow-up of abnormal microarrays.
Collapse
|
12
|
Hector RD, Kalscheuer VM, Hennig F, Leonard H, Downs J, Clarke A, Benke TA, Armstrong J, Pineda M, Bailey MES, Cobb SR. CDKL5 variants: Improving our understanding of a rare neurologic disorder. NEUROLOGY-GENETICS 2017; 3:e200. [PMID: 29264392 PMCID: PMC5732004 DOI: 10.1212/nxg.0000000000000200] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/28/2017] [Indexed: 02/01/2023]
Abstract
Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.
Collapse
Affiliation(s)
- Ralph D Hector
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Vera M Kalscheuer
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Friederike Hennig
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Leonard
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Jenny Downs
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Angus Clarke
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Tim A Benke
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Judith Armstrong
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mercedes Pineda
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mark E S Bailey
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart R Cobb
- Institute of Neuroscience & Psychology (R.D.H., S.R.C.), University of Glasgow, UK, Drs. Hector and Cobb are currently with the Patrick Wild Centre and Centre for Discovery Brain Science, University of Edinburgh, UK; Group Development and Disease (V.M.K., F.H.), Max Planck Institute for Molecular Genetics, Berlin, Germany; Telethon Kids Institute (H.L., J.D.), The University of Western Australia, Perth, Western Australia; School of Physiotherapy and Exercise Science (J.D.), Curtin University, Perth, Australia; Institute of Medical Genetics (A.C.), School of Medicine, Cardiff University, Cardiff, Wales, UK; Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology (T.A.B.), University of Colorado School of Medicine, Aurora, CO; Paedriatic Neuroscience (J.A., M.P.), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Hospital Sant Joan de Déu Barcelona (J.A.), Esplugues de Llobregat, Spain; CIBERER (J.A.), Barcelona, Spain; Neuropediatrics (M.P.), Fundació Sant Joan de Déu, Esplugues de Llobregat, Spain; and School of Life Sciences (M.E.S.B.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
13
|
Szafranski P, Golla S, Jin W, Fang P, Hixson P, Matalon R, Kinney D, Bock HG, Craigen W, Smith JL, Bi W, Patel A, Wai Cheung S, Bacino CA, Stankiewicz P. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J Hum Genet 2014; 23:915-21. [PMID: 25315662 DOI: 10.1038/ejhg.2014.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022] Open
Abstract
Point mutations and genomic deletions of the CDKL5 (STK9) gene on chromosome Xp22 have been reported in patients with severe neurodevelopmental abnormalities, including Rett-like disorders. To date, only larger-sized (8-21 Mb) duplications harboring CDKL5 have been described. We report seven females and four males from seven unrelated families with CDKL5 duplications 540-935 kb in size. Three families of different ethnicities had identical 667kb duplications containing only the shorter CDKL5 isoform. Four affected boys, 8-14 years of age, and three affected girls, 6-8 years of age, manifested autistic behavior, developmental delay, language impairment, and hyperactivity. Of note, two boys and one girl had macrocephaly. Two carrier mothers of the affected boys reported a history of problems with learning and mathematics while at school. None of the patients had epilepsy. Similarly to CDKL5 mutations and deletions, the X-inactivation pattern in all six studied females was random. We hypothesize that the increased dosage of CDKL5 might have affected interactions of this kinase with its substrates, leading to perturbation of synaptic plasticity and learning, and resulting in autistic behavior, developmental and speech delay, hyperactivity, and macrocephaly.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sailaja Golla
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihong Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ping Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Patricia Hixson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Reuben Matalon
- Division of General Academic Pediatrics, Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Daniel Kinney
- Memorial Children's Hospital Navarre Pediatrics South Bend, South Bend, IN, USA
| | - Hans-Georg Bock
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Popovici C, Busa T, Boute O, Thuresson AC, Perret O, Sigaudy S, Södergren T, Andrieux J, Moncla A, Philip N. Whole ARX gene duplication is compatible with normal intellectual development. Am J Med Genet A 2014; 164A:2324-7. [PMID: 25044608 DOI: 10.1002/ajmg.a.36564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/12/2014] [Indexed: 12/24/2022]
Abstract
We report here on four males from three families carrying de novo or inherited small Xp22.13 duplications including the ARX gene detected by chromosomal microarray analysis (CMA). Two of these males had normal intelligence. Our report suggests that, unlike other XLMR genes like MECP2 and FMR1, the presence of an extra copy of the ARX gene may not be sufficient to perturb its developmental functions. ARX duplication does not inevitably have detrimental effects on brain development, in contrast with the effects of ARX haploinsufficiency. The abnormal phenotype ascribed to the presence of an extra copy in some male patients may have resulted from the effect of another, not yet identified, chromosomal or molecular anomaly, alone or in association with ARX duplication.
Collapse
Affiliation(s)
- Cornel Popovici
- APHM, Hôpital Timone-Enfants, Département de Génétique Médicale, Marseille, France; Aix-Marseille Université, Inserm, GMGF UMR_S 910, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
16
|
What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012; 2012:728267. [PMID: 22779007 PMCID: PMC3385648 DOI: 10.1155/2012/728267] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
In the last few years, the X-linked serine/threonine kinase cyclin-dependent kinase-like 5 (CDKL5) has been associated with early-onset epileptic encephalopathies characterized by the manifestation of intractable epilepsy within the first weeks of life, severe developmental delay, profound hypotonia, and often the presence of some Rett-syndrome-like features. The association of CDKL5 with neurodevelopmental disorders and its high expression levels in the maturing brain underscore the importance of this kinase for proper brain development. However, our present knowledge of CDKL5 functions is still rather limited. The picture that emerges from the molecular and cellular studies suggests that CDKL5 functions are important for regulating both neuronal morphology through cytoplasmic signaling pathways and activity-dependent gene expression in the nuclear compartment. This paper surveys the current state of CDKL5 research with emphasis on the clinical symptoms associated with mutations in CDKL5, the different mechanisms regulating its functions, and the connected molecular pathways. Finally, based on the available data we speculate that CDKL5 might play a role in neuronal plasticity and we adduce and discuss some possible arguments supporting this hypothesis.
Collapse
|