1
|
Vaseghi P, Habibi L, Neidich JA, Cao Y, Fattahi N, Rashidi-Nezhad R, Salehnezhad T, Dalili H, Rahimi Sharbaf F, Zarkesh MR, Malekian M, Mokhberdezfuli M, Mehrtash A, Ardeshirdavani A, Kariminejad R, Ghorbansabagh V, Sadeghimoghadam P, Naddaf A, Esmaeilnia Shirvany T, Mosayebi Z, Sahebdel B, Golshahi F, Shirazi M, Shamel S, Moeini R, Heidari A, Daneshmand MA, Ghasemi R, Akrami SM, Rashidi-Nezhad A. Towards solving the genetic diagnosis odyssey in Iranian patients with congenital anomalies. Eur J Hum Genet 2024; 32:1238-1249. [PMID: 38278869 PMCID: PMC11499880 DOI: 10.1038/s41431-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024] Open
Abstract
Understanding the underlying causes of congenital anomalies (CAs) can be a complex diagnostic journey. We aimed to assess the efficiency of exome sequencing (ES) and chromosomal microarray analysis (CMA) in patients with CAs among a population with a high fraction of consanguineous marriage. Depending on the patient's symptoms and family history, karyotype/Quantitative Fluorescence- Polymerase Chain Reaction (QF-PCR) (n = 84), CMA (n = 81), ES (n = 79) or combined CMA and ES (n = 24) were performed on 168 probands (66 prenatal and 102 postnatal) with CAs. Twelve (14.28%) probands were diagnosed by karyotype/QF-PCR and seven (8.64%) others were diagnosed by CMA. ES findings were conclusive in 39 (49.36%) families, and 61.90% of them were novel variants. Also, 64.28% of these variants were identified in genes that follow recessive inheritance in CAs. The diagnostic rate (DR) of ES was significantly higher than that of CMA in children from consanguineous families (P = 0·0001). The highest DR by CMA was obtained in the non-consanguineous postnatal subgroup and by ES in the consanguineous prenatal subgroup. In a population that is highly consanguineous, our results suggest that ES may have a higher diagnostic yield than CMA and should be considered as the first-tier test in the evaluation of patients with congenital anomalies.
Collapse
Affiliation(s)
- Parisa Vaseghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Laleh Habibi
- Ronash Medical Genetics Laboratory, Tehran, Iran
| | - Julie A Neidich
- Department of Pathology & Immunology, Division of Laboratory & Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang Cao
- Department of Pathology & Immunology, Division of Laboratory & Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Neda Fattahi
- Ronash Medical Genetics Laboratory, Tehran, Iran
| | | | | | - Hossein Dalili
- Breastfeeding Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi Sharbaf
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarkesh
- Department of Neonatology, Yas Hospital Complex, Tehran university of medical sciences, Tehran, Iran
| | | | - Mahdieh Mokhberdezfuli
- Ronash Medical Genetics Laboratory, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Vafa Ghorbansabagh
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvane Sadeghimoghadam
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Naddaf
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Esmaeilnia Shirvany
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Mosayebi
- Department of Pediatrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrokh Sahebdel
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Golshahi
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Shirazi
- Department of Obstetrics and Gynecology, School of Medicine, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Shamel
- Department of Neonatology, Yas Hospital Complex, Tehran university of medical sciences, Tehran, Iran
| | - Roksana Moeini
- Department of Neonatology, Yas Hospital Complex, Tehran university of medical sciences, Tehran, Iran
| | | | | | - Reza Ghasemi
- Department of Pathology & Immunology, Division of Laboratory & Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Vaseghi H, Akrami SM, Rashidi‐Nezhad A. The challenges in the interpretation of genetic variants detected by genomics techniques in patients with congenital anomalies. J Clin Lab Anal 2023; 37:e24967. [PMID: 37823350 PMCID: PMC10623530 DOI: 10.1002/jcla.24967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Despite the efforts that have been made to standardize the interpretation of variants, in some cases, their pathogenicity remains vague and confusing, and sometimes their interpretation does not help clinicians to establish clinical correlation using genetic test results. This study aims to shed more lights on these challenging variants. METHODS In a clinical setting, the variants found from 81 array CGH and 79 whole exome sequencing (WES) in patients with congenital anomalies were interpreted based on American College of Medical Genetics and Genomics guidelines. RESULTS In this study, the interpretation of the disease-causing variants and the variants with uncertain clinical significance detected by WES was far more challenging than the variants detected by array CGH. The presence of unreported clinical symptoms, incomplete penetrance, variable expressivity, parents' reluctance to analyze segregation in the family, and the limitations of prenatal tests, were among the challenging factors in the interpretation of variants in this study. CONCLUSION A careful study of the pedigree and disease mode of inheritance, as well as a careful clinical examination of the carrier parents in diseases with autosomal dominant inheritance, are among the primary strategies for determining the clinical significance of the variants. Continued efforts to mitigate these challenges are needed to improve the interpretation of variants.
Collapse
Affiliation(s)
- Hajar Vaseghi
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Ali Rashidi‐Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Meza-Espinoza JP, Sáinz González E, León-León CJN, Arámbula-Meraz E, Contreras-Gutiérrez JA, García-Magallanes N, Madueña-Molina J, Luque-Ortega F, Cervín-Serrano S, Picos-Cárdenas VJ. Report of trisomy 2q34-qter and monosomy 4q35.2-qter in a child with mild dysmorphic syndrome and karyotype 46,XY,der(4)t(2;4)(q34;q35.2)pat. Mol Cytogenet 2020; 13:17. [PMID: 32467733 PMCID: PMC7236877 DOI: 10.1186/s13039-020-00484-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background Concomitant trisomy 2q3 and monosomy 4q3 have been rarely reported. Pure trisomy 2q3 has been associated with microcephaly, hypertelorism, low-set ears, micrognathia, visceral abnormalities, and growth retardation. Monosomy 4q3 includes a wide variety of dysmorphic features such an abnormal skull shape, hypertelorism, Pierre Robin sequence, short nose with abnormal bridge, fifth finger clinodactyly, congenital heart, and genitourinary defects, in addition to intellectual disability, developmental delay, and hypotonia, but more distal deletions involving 4q34-qter may result in milder phenotypes. Here, we present a child with a mild dysmorphic syndrome, resulted of a duplication 2q34-qter and a deletion 4q35.2-qter inherited of his father. Case presentation We report a child, who at birth presented hypotonia, dysmorphism, and bilateral cryptorchidism. At 2 years and 9 month of age he showed brachycephaly, narrow forehead, bilateral frontoparietal hypertrichosis, down slanting palpebral fissures, sparse eyebrows, sparse short eyelashes, hypertelorism, depressed nasal root, broad nasal bridge, bulbous nasal tip, prominent colummela, broad nasal ala, smooth filtrum, high arched palate, thin upper lips, and ears rotated backwards. He also showed telethelia, hypertrichosis from dorsal to the sacral region, hands with clinodactyly and hypoplasia of the terminal phalanx of the fifth finger, and broad thumbs, broad first toes, and right cryptorchidism. A chromosomal study revealed a karyotype 46,XY,der(4)t(2;4)(q34;q35.2), while an array comparative genomic hybridization showed a 31.12 Mb duplication of the chromosome 2q34-q37.3 and a 1.49 Mb deletion in the chromosome 4q35.2. Conclusions To our knowledge, only four families with translocation t(2;4) have been reported, two of them involving t(2q;4q), but the breakpoints involved in our patient have not been previously observed. The genomic imbalance in this patient was a duplication of 318 genes of the region 2q34-q37.3 and a deletion of 7 genes of 4q35.2. We discuss difficulty to assign specific congenital abnormalities to these duplicated/deleted regions and include some cases with terminal deletions of 4q with normal or just mildly detectable phenotypic effects.
Collapse
Affiliation(s)
- Juan Pablo Meza-Espinoza
- 1Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Tamps., Mexico
| | | | - Christian J N León-León
- 3Unidad Médica Familiar 11, Instituto Mexicano del Seguro Social (IMSS), Villa Juárez, Navolato, Sin., Mexico
| | - Eliakym Arámbula-Meraz
- 4Laboratorio de Genética y Biología Molecular, Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | | | - Noemí García-Magallanes
- Laboratorio de Biomedicina y Biología Molecular, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Mazatlán, Sin., Mexico
| | | | - Fred Luque-Ortega
- 7Facultad de Odontología, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | | | - Verónica Judith Picos-Cárdenas
- Servicio de Medicina Genética, Hospital General de Culiacán, Culiacán, Sin., Mexico.,8Laboratorio de Genética, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| |
Collapse
|
5
|
Ma R, Peng Y, Zhang Y, Xia Y, Tang G, Chang J, Guo R, Gui B, Huang Y, Chen C, Liang D, Wu L. Partial trisomy 2q33.3-q37.3 in a patient with an inverted duplicated neocentric marker chromosome. Mol Cytogenet 2015; 8:10. [PMID: 25774219 PMCID: PMC4359772 DOI: 10.1186/s13039-015-0111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Increasing number of cases with small supernumerary marker chromosomes (sSMCs) without centromeric DNA and dozens of cases with trisomy 2q3 have been reported in recent years. However, cases of simultaneous sSMC and partial trisomy of chromosome 2q have been rarely described. RESULTS We report the case of a young girl patient with growth retardation and mild facial features due to a partial trisomy 2q33.3-37.3. The 34.3 Mb-duplication of the 2q33.3 to q37.3 region found in the patient constituted a supernumerary inverted duplicated neocentric marker chromosome. CONCLUSIONS This is the first case of a patient with partial trisomy 2q33.3-37.3 presenting an inverted duplicated neocentric marker chromosome. Based on the case, this study will help further understanding the genotype/phenotype correlations of partial 2q3 duplication and exploring the relationship between neocentric sSMC and human diseases.
Collapse
Affiliation(s)
- Ruiyu Ma
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Ying Peng
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Yanghui Zhang
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Yan Xia
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Guizhi Tang
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Jiazhen Chang
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Ruolan Guo
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Baoheng Gui
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Yanru Huang
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Chen Chen
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
- />Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan P.R China
| | - Desheng Liang
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| | - Lingqian Wu
- />State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Rd, Changsha, Hunan 410078 China
| |
Collapse
|
6
|
Rashidi-Nezhad A, Talebi S, Saebnouri H, Akrami SM, Reymond A. The effect of homozygous deletion of the BBOX1 and Fibin genes on carnitine level and acyl carnitine profile. BMC MEDICAL GENETICS 2014; 15:75. [PMID: 24986124 PMCID: PMC4184381 DOI: 10.1186/1471-2350-15-75] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 06/26/2014] [Indexed: 11/10/2022]
Abstract
Background Carnitine is a key molecule in energy metabolism that helps transport activated fatty acids into the mitochondria. Its homeostasis is achieved through oral intake, renal reabsorption and de novo biosynthesis. Unlike dietary intake and renal reabsorption, the importance of de novo biosynthesis pathway in carnitine homeostasis remains unclear, due to lack of animal models and description of a single patient defective in this pathway. Case presentation We identified by array comparative genomic hybridization a 42 months-old girl homozygote for a 221 Kb interstitial deletions at 11p14.2, that overlaps the genes encoding Fibin and butyrobetaine-gamma 2-oxoglutarate dioxygenase 1 (BBOX1), an enzyme essential for the biosynthesis of carnitine de novo. She presented microcephaly, speech delay, growth retardation and minor facial anomalies. The levels of almost all evaluated metabolites were normal. Her serum level of free carnitine was at the lower limit of the reference range, while her acylcarnitine to free carnitine ratio was normal. Conclusions We present an individual with a completely defective carnitine de novo biosynthesis. This condition results in mildly decreased free carnitine level, but not in clinical manifestations characteristic of carnitine deficiency disorders, suggesting that dietary carnitine intake and renal reabsorption are sufficient to carnitine homeostasis. Our results also demonstrate that haploinsufficiency of BBOX1 and/or Fibin is not associated with Primrose syndrome as previously suggested.
Collapse
Affiliation(s)
| | | | | | - Seyed Mohammad Akrami
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | | |
Collapse
|