1
|
Nakano Y, Acker M, Druker H, van Engelen K, Meyn MS, Wasserman JD, Venier RE, Goudie C, Stosic A, Huang A, Greer MLC, Malkin D, Villani A, Gallinger B. Late-onset tumors in rhabdoid tumor predisposition syndrome type-1 (RTPS1) and implications for surveillance. Eur J Hum Genet 2024:10.1038/s41431-024-01674-z. [PMID: 39117932 DOI: 10.1038/s41431-024-01674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Rhabdoid tumor predisposition syndrome type-1 (RTPS1) is characterized by germline pathogenic variants in SMARCB1 and development of INI1-deficient rhabdoid tumors in early childhood. Due to its poor prognosis, the risk of subsequent tumor development and the impact of surveillance at later ages are poorly understood. We retrospectively reviewed individuals referred to the Cancer Genetics Program at The Hospital for Sick Children for SMARCB1 genetic testing and/or surveillance for RTPS1. In addition, to explore characteristics of late-onset tumors in RTPS1, a literature review was conducted. Of eighty-three individuals (55 probands and 28 family members), 12 probands and 4 family members were genetically confirmed with RTPS1. Four pediatric probands with RTPS1 underwent surveillance. An additional three individuals, including one patient with 22q11.2 distal deletion without history of tumor, one patient with negative genetic testing results but clinically diagnosed with RTPS1, and one sibling identified through cascade testing, underwent surveillance. Three patients with RTPS1 developed tumors between the ages of 9 and 17, including malignant rhabdoid tumors (N = 3), schwannomas (N = 4), and epithelioid malignant peripheral nerve sheath tumor (N = 1). Three of these lesions were asymptomatically detected by surveillance. A literature review revealed 17 individuals with RTPS1 who developed INI1-deficient tumors after age five. Individuals with RTPS1 remain at elevated risk for developing INI1-deficient tumors after the peak age of rhabdoid tumor in early childhood. Extension of surveillance beyond 5 years of age could lead to improved survival and reduced morbidity for these patients, and prospective evaluation of revised approaches will be important.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Meryl Acker
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Harriet Druker
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kalene van Engelen
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON, Canada
| | - M Stephen Meyn
- Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jonathan D Wasserman
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rosemarie E Venier
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Genetic Counselling, University of Toronto, Toronto, ON, Canada
| | - Catherine Goudie
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - Ana Stosic
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Annie Huang
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| | - Bailey Gallinger
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Genetic Counselling, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Goldmuntz E, Bassett AS, Boot E, Marino B, Moldenhauer JS, Óskarsdóttir S, Putotto C, Rychik J, Schindewolf E, McDonald-McGinn DM, Blagowidow N. Prenatal cardiac findings and 22q11.2 deletion syndrome: Fetal detection and evaluation. Prenat Diagn 2024; 44:804-814. [PMID: 38593251 DOI: 10.1002/pd.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Clinical features of 22q11.2 microdeletion syndrome (22q11.2DS) are highly variable between affected individuals and frequently include a subset of conotruncal and aortic arch anomalies. Many are diagnosed with 22q11.2DS when they present as a fetus, newborn or infant with characteristic cardiac findings and subsequently undergo genetic testing. The presence of an aortic arch anomaly with characteristic intracardiac anomalies increases the likelihood that the patient has 22q11.2 DS, but those with an aortic arch anomaly and normal intracardiac anatomy are also at risk. It is particularly important to identify the fetus at risk for 22q11.2DS in order to prepare the expectant parents and plan postnatal care for optimal outcomes. Fetal anatomy scans now readily identify aortic arch anomalies (aberrant right subclavian artery, right sided aortic arch or double aortic arch) in the three-vessel tracheal view. Given the association of 22q11.2DS with aortic arch anomalies with and without intracardiac defects, this review highlights the importance of recognizing the fetus at risk for 22q11.2 deletion syndrome with an aortic arch anomaly and details current methods for genetic testing. To assist in the prenatal diagnosis of 22q11.2DS, this review summarizes the seminal features of 22q11.2DS, its prenatal presentation and current methods for genetic testing.
Collapse
Affiliation(s)
- Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne S Bassett
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erik Boot
- The Dalglish Family 22q Clinic, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Advisium, 's Heeren Loo Zorggroep, Amersfoort, The Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Bruno Marino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome (Italy), Roma, Italy
| | - Julie S Moldenhauer
- Division of Human Genetics, 22q and You Center, Clinical Genetics Center, Section of Genetic Counseling, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Obstetrics and Gynecology and Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sólveig Óskarsdóttir
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Immunology, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome (Italy), Roma, Italy
| | - Jack Rychik
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica Schindewolf
- Division of Human Genetics, 22q and You Center, Clinical Genetics Center, Section of Genetic Counseling, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, 22q and You Center, Clinical Genetics Center, Section of Genetic Counseling, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Human Biology and Medical Genetics, Sapienza University, Rome, Italy
| | - Natalie Blagowidow
- The Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Blagowidow N, Nowakowska B, Schindewolf E, Grati FR, Putotto C, Breckpot J, Swillen A, Crowley TB, Loo JCY, Lairson LA, Óskarsdóttir S, Boot E, Garcia-Minaur S, Cristina Digilio M, Marino B, Coleman B, Moldenhauer JS, Bassett AS, McDonald-McGinn DM. Prenatal Screening and Diagnostic Considerations for 22q11.2 Microdeletions. Genes (Basel) 2023; 14:160. [PMID: 36672900 PMCID: PMC9858737 DOI: 10.3390/genes14010160] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Diagnosis of a chromosome 22q11.2 microdeletion and its associated deletion syndrome (22q11.2DS) is optimally made early. We reviewed the available literature to provide contemporary guidance and recommendations related to the prenatal period. Indications for prenatal diagnostic testing include a parent or child with the 22q11.2 microdeletion or suggestive prenatal screening results. Definitive diagnosis by genetic testing of chorionic villi or amniocytes using a chromosomal microarray will detect clinically relevant microdeletions. Screening options include noninvasive prenatal screening (NIPS) and imaging. The potential benefits and limitations of each screening method should be clearly conveyed. NIPS, a genetic option available from 10 weeks gestational age, has a 70-83% detection rate and a 40-50% PPV for most associated 22q11.2 microdeletions. Prenatal imaging, usually by ultrasound, can detect several physical features associated with 22q11.2DS. Findings vary, related to detection methods, gestational age, and relative specificity. Conotruncal cardiac anomalies are more strongly associated than skeletal, urinary tract, or other congenital anomalies such as thymic hypoplasia or cavum septi pellucidi dilatation. Among others, intrauterine growth restriction and polyhydramnios are additional associated, prenatally detectable signs. Preconception genetic counselling should be offered to males and females with 22q11.2DS, as there is a 50% risk of transmission in each pregnancy. A previous history of a de novo 22q11.2 microdeletion conveys a low risk of recurrence. Prenatal genetic counselling includes an offer of screening or diagnostic testing and discussion of results. The goal is to facilitate optimal perinatal care.
Collapse
Affiliation(s)
- Natalie Blagowidow
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, MD 21204, USA
| | - Beata Nowakowska
- Cytogenetic Laboratory, Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment and the 22q and You Center, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Francesca Romana Grati
- R&D Department, Menarini Biomarkers Singapore, Via Giuseppe di Vittorio 21/b3, 40013 Castel Maggiore, Italy
| | - Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome (Italy), Viale del Policlinico 155, 00161 Roma, Italy
| | - Jeroen Breckpot
- Center for Human Genetics, Herestraat 49, 3000 Leuven, Belgium
| | - Ann Swillen
- Center for Human Genetics, Herestraat 49, 3000 Leuven, Belgium
| | - Terrence Blaine Crowley
- Division of Human Genetics, The 22q and You Center, and Clinical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joanne C. Y. Loo
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Lauren A. Lairson
- Division of Human Genetics, The 22q and You Center, and Clinical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sólveig Óskarsdóttir
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Paediatrics, Queen Silva Children’s Hospital, 416 50 Gothenburg, Sweden
| | - Erik Boot
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada
- Advisium’s Heeren Loo, Berkenweg 11, 3818 LA Amersfoort, The Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sixto Garcia-Minaur
- Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, 28046 Madrid, Spain
| | | | - Bruno Marino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome (Italy), Viale del Policlinico 155, 00161 Roma, Italy
| | - Beverly Coleman
- Center for Fetal Diagnosis and Treatment and the 22q and You Center, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie S. Moldenhauer
- Center for Fetal Diagnosis and Treatment and the 22q and You Center, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Obstetrics, Gynecology, and Surgery, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne S. Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON M5G 2C4, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON M5S 2S1, Canada
- Division of Cardiology, Department of Medicine, and Centre for Mental Health, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Donna M. McDonald-McGinn
- Division of Human Genetics, The 22q and You Center, and Clinical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Biology and Medical Genetics, Sapienza University, 00185 Roma, Italy
| |
Collapse
|
4
|
Rosenberg AGW, Pater MRA, Pellikaan K, Davidse K, Kattentidt-Mouravieva AA, Kersseboom R, Bos-Roubos AG, van Eeghen A, Veen JMC, van der Meulen JJ, van Aalst-van Wieringen N, Hoekstra FME, van der Lely AJ, de Graaff LCG. What Every Internist-Endocrinologist Should Know about Rare Genetic Syndromes in Order to Prevent Needless Diagnostics, Missed Diagnoses and Medical Complications: Five Years of 'Internal Medicine for Rare Genetic Syndromes'. J Clin Med 2021; 10:jcm10225457. [PMID: 34830739 PMCID: PMC8622899 DOI: 10.3390/jcm10225457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with complex rare genetic syndromes (CRGS) have combined medical problems affecting multiple organ systems. Pediatric multidisciplinary (MD) care has improved life expectancy, however, transfer to internal medicine is hindered by the lack of adequate MD care for adults. We have launched an MD outpatient clinic providing syndrome-specific care for adults with CRGS, which, to our knowledge, is the first one worldwide in the field of internal medicine. Between 2015 and 2020, we have treated 720 adults with over 60 syndromes. Eighty-nine percent of the syndromes were associated with endocrine problems. We describe case series of missed diagnoses and patients who had undergone extensive diagnostic testing for symptoms that could actually be explained by their syndrome. Based on our experiences and review of the literature, we provide an algorithm for the clinical approach of health problems in CRGS adults. We conclude that missed diagnoses and needless invasive tests seem common in CRGS adults. Due to the increased life expectancy, an increasing number of patients with CRGS will transfer to adult endocrinology. Internist-endocrinologists (in training) should be aware of their special needs and medical pitfalls of CRGS will help prevent the burden of unnecessary diagnostics and under- and overtreatment.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Minke R. A. Pater
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | | | - Rogier Kersseboom
- Stichting Zuidwester, 3241 LB Middelharnis, The Netherlands; (A.A.K.-M.); (R.K.)
| | - Anja G. Bos-Roubos
- Center of Excellence for Neuropsychiatry, Vincent van Gogh, 5803 DN Venray, The Netherlands;
| | - Agnies van Eeghen
- ‘s Heeren Loo, Care Group, 3818 LA Amersfoort, The Netherlands;
- Department of Pediatrics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - José M. C. Veen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Jiske J. van der Meulen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Nina van Aalst-van Wieringen
- Department of Physical Therapy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Franciska M. E. Hoekstra
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Department of Internal Medicine, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENCORE—Dutch Center of Reference for Neurodevelopmental Disorders, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Turner Syndrome, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Disorders of Sex Development, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Fischer M, Klopocki E. Atypical 22q11.2 Microduplication with "Typical" Signs and Overgrowth. Cytogenet Genome Res 2021; 160:659-663. [PMID: 33472199 PMCID: PMC8117256 DOI: 10.1159/000512486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
The 22q11.2 microduplication syndrome shows variable phenotypes with reduced penetrance compared to the 22q11.2 deletion syndrome. We report a woman with overgrowth and macrocephaly, mild mental retardation, heart defect, kidney anomalies, and dysmorphic features. Array-CGH analysis revealed a 246-kb duplication at the 22q11.2 region. No additional clinically significant CNVs were found. The case resembles a previously published case also showing overgrowth and macrocephaly with an almost identical 22q11.2 duplication of 252 kb.
Collapse
Affiliation(s)
- Matthias Fischer
- Department for Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany,
- Department for Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany,
| | - Eva Klopocki
- Institute of Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Sánchez AI, García-Acero MA, Paredes A, Quero R, Ortega RI, Rojas JA, Herrera D, Parra M, Prieto K, Ángel J, Rodríguez LS, Prieto JC, Franco M. Immunodeficiency in a Patient with 22q11.2 Distal Deletion Syndrome and a p.Ala7dup Variant in the MAPK1 Gene. Mol Syndromol 2020; 11:15-23. [PMID: 32256297 DOI: 10.1159/000506032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The genetic basis for sporadic immunodeficiency in patients with 22q11.2 distal deletion syndrome is unknown. We report an adult with a type 1 (D-F) 22q11.2 distal deletion syndrome and recurrent severe infections due to herpes zoster virus, presenting mild T cell lymphopenia and diminished frequency of naive CD4<sup>+</sup> T cells, but increased frequencies of central, effector, and terminally differentiated memory T cells. Antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells to influenza, rotavirus, and SEB were conserved in the patient, but responses to tetanus toxoid were temporarily undetectable. Exomic sequencing identified the c.20_22dupCGG (NM_002745.4) variant in the remaining MAPK1 gene of the patient, which adds 1 alanine to the polyalanine amino-terminal tract of the protein (p.Ala7dup). The mother, unlike the father, was heterozygote for the variant. Western blot analysis with the patient's activated PBMCs showed a 91% reduction in the MAPK1 protein. Further studies will be necessary to determine whether or not the variant present in the remaining MAPK1 gene of the patient is pathogenic.
Collapse
Affiliation(s)
- Ana I Sánchez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia.,Departamento Materno Infantil, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Columbia
| | - Mary A García-Acero
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Angela Paredes
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Rossi Quero
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Rita I Ortega
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Jorge A Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Daniel Herrera
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel Parra
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Karol Prieto
- Immunobiology and Cell Biology Group, Department of Microbiology, School of Science Pontificia Universidad Javeriana, Bogota, Colombia
| | - Juana Ángel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Luz-Stella Rodríguez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Juan C Prieto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogota, Colombia
| |
Collapse
|
7
|
Riley JD, Delahunty C, Alsadah A, Mazzola S, Astbury C. Further evidence of GABRA4 and TOP3B as autism susceptibility genes. Eur J Med Genet 2020; 63:103876. [PMID: 32028044 DOI: 10.1016/j.ejmg.2020.103876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Chromosomal copy number variants (CNVs) are known contributors to neurodevelopmental conditions such as autism spectrum disorder (ASD). Both array comparative genomic hybridization and next-generation sequencing techniques have led to an increased detection of small CNVs and the identification of many candidate susceptibility genes for ASD. We report familial inheritance of two CNVs that include genes with known involvement in neurodevelopment. These CNVs are found in various combinations among four siblings with autism spectrum disorder, as well as in their neurodevelopmentally normal parents. We describe a 2.4 Mb duplication of 4p12 to 4p11 that includes GABRA4 (OMIM: 137141) and other GABA receptor genes, as well as a 246 kb deletion at 22q11.22 involving the TOP3B gene (OMIM: 603582). The maternally inherited 4p duplication was detected in three siblings, two of whom also had the paternally inherited 22q11.22 deletion. The fourth sibling only had the 22q11.22 deletion. These CNVs have rarely been reported in the literature. Upon review, a single publication was found describing a similar 4p duplication in three generations of a family with neurodevelopmental and neuropsychiatric disorders, as well as in an unrelated patient with autism (Polan et al., 2014). TOP3B falls within the distal 22q11.22 microdeletion syndrome and has been associated with schizophrenia, neurodevelopmental disorders including epilepsy, and cardiac defects. The identification of this family contributes to the understanding of specific genetic contributors to neurodevelopmental disorders and an emerging phenotype associated with proximal 4p duplication.
Collapse
Affiliation(s)
- Jacquelyn D Riley
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carol Delahunty
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA; Developmental and Rehabilitation Pediatrics, Cleveland Clinic, Cleveland, OH, USA
| | - Adnan Alsadah
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Mazzola
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Caroline Astbury
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
8
|
Cárdenas-Nieto D, Forero-Castro M, Esteban-Pérez C, Martínez-Lozano J, Briceño-Balcázar I. The 22q11.2 Microdeletion in Pediatric Patients with Cleft Lip, Palate, or Both and Congenital Heart Disease: A Systematic Review. J Pediatr Genet 2020; 9:1-8. [PMID: 31976137 DOI: 10.1055/s-0039-1698804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is present in approximately 5 to 8% of patients with cleft lip, palate, or both (CL/P) and 75 to 80% of patients with congenital heart disease (CHD). In a literature review, we consider this association of 22q11.2DS in pediatric patients with CL/P and CHD. Early diagnosis of 22q11.2DS in pediatric patients with CL/P and CHD helps to optimize a multidisciplinary treatment approach for 22q11DS. Early diagnosis, thereby, can improve quality of life for these patients and awareness of other potential clinical implications that may require attention throughout the patient's life.
Collapse
Affiliation(s)
- Diana Cárdenas-Nieto
- Programa de Maestría en Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Maribel Forero-Castro
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Clara Esteban-Pérez
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Julio Martínez-Lozano
- Facultad de Medicina, Grupo de investigación en Genética Humana, Universidad de La Sabana, Chía, Colombia
| | - Ignacio Briceño-Balcázar
- Facultad de Medicina, Grupo de investigación en Genética Humana, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
9
|
Matsuo M, Yamamoto T, Saito K. Long-term natural history of an adult patient with distal 22q11.2 deletion from low copy repeat-D to E. Congenit Anom (Kyoto) 2019; 59:102-103. [PMID: 29926511 DOI: 10.1111/cga.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Mari Matsuo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
10
|
Oliveira LDFS, Júlio-Costa A, Dos Santos FC, Carvalho MRS, Haase VG. Numerical Processing Impairment in 22q11.2 (LCR22-4 to LCR22-5) Microdeletion: A Cognitive-Neuropsychological Case Study. Front Psychol 2018; 9:2193. [PMID: 30524331 PMCID: PMC6258774 DOI: 10.3389/fpsyg.2018.02193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Although progress has been made, the cognitive, biological and, particularly, the genetic underpinnings of math learning difficulties (MD) remain largely unknown. This difficulty stems from the heterogeneity of MD and from the large contribution of environmental factors to its etiology. Understanding endophenotypes, e.g., the role of the Approximate Number System (ANS), may help understanding the nature of MD. MD associated with ANS impairments has been described in some genetic conditions, e.g., 22q11.2 deletion syndrome (22q11.2DS or Velocardiofacial syndrome, VCFS). Recently, a girl with MD was identified in a school population screening. She has a new syndrome resulting from a microdeletion in 22q11.2 (LCR22-4 to LCR22-5), a region adjacent to but not overlapping with region 22q11.2 (LCR22-2 to LCR22-4), typically deleted in VCFS. Here, we describe her cognitive-neuropsychological and numerical-cognitive profiles. The girl was assessed twice, at 8 and 11 years. Her numerical-cognitive performance at both times was compared to demographically similar girls with normal intelligence in a single-case, quasi-experimental study. Neuropsychological assessment was normal, except for relatively minor impairments in executive functions. She presented severe and persistent difficulties in the simplest single-digit calculations. Difficulties in commutative operations improved from the first to the second assessment. Difficulties in subtraction persisted and were severe. No difficulties were observed in Arabic number writing. Difficulties in single-digit calculation co-occurred with basic numerical processing impairments in symbolic and non-symbolic (single-digit comparison, dot sets size comparison and estimation) tasks. Her difficulties suggest ANS impairment. No difficulties were detected in visuospatial/visuoconstructional and in phonological processing tasks. The main contributions of the present study are: (a) this is the first characterization of the neuropsychological phenotype in 22q11.2DS (LCR22-4 to LCR22.5) with normal intelligence; (b) mild forms of specific genetic conditions contribute to persistent MD in otherwise typical persons; (c) heterogeneity of neurogenetic underpinnings of MD is suggested by poor performance in non-symbolic numerical processing, dissociated from visuospatial/visuoconstructional and phonological impairments; (d) similar to what happens in 22q11.2DS (LCR22-2 to LCR22-4), ANS impairments may also characterize 22q11.2DS (LCR22-4 to LCR22-5).
Collapse
Affiliation(s)
- Lívia de Fátima Silva Oliveira
- Laboratório de Neuropsicologia do Desenvolvimento, Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Annelise Júlio-Costa
- Laboratório de Neuropsicologia do Desenvolvimento, Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Vitor Geraldi Haase
- Laboratório de Neuropsicologia do Desenvolvimento, Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-graduação em Psicologia, Cognição e Comportamento, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-graduação em Saúde da Criança e do Adolescente, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino, São Carlos, Brazil
| |
Collapse
|
11
|
[Child psychiatry interventions in patients with 22q11 deletion syndrome: From treatment to prevention]. Encephale 2018; 45:175-181. [PMID: 30470499 DOI: 10.1016/j.encep.2018.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022]
Abstract
22q11.2DS is one of the more frequent genetic syndromes associated to psychiatric symptoms. It has been associated to an increased risk to develop schizophrenia in adolescence or early adulthood. However, psychiatric symptoms appear early on, and should be recognized as soon as possible by child psychiatrists in order to improve the present well-being of children and their family, and to prevent further risks of developing severe and chronic psychiatric diseases later on. In this paper, we present a review of the recent literature concerning the 22q11.2DS syndrome focused on the risk factors that may be associated to an increased risk of psychotic transition. We advocate for the development of systematic specialized child psychiatry consultations for these patients, included in networks with geneticists, adult psychiatrists, and family associations, in order to improve their psychiatric prognosis and to support the development of translational research.
Collapse
|
12
|
D’Angelo CS, Varela MC, de Castro CIE, Otto PA, Perez ABA, Lourenço CM, Kim CA, Bertola DR, Kok F, Garcia-Alonso L, Koiffmann CP. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol Cytogenet 2018; 11:14. [PMID: 29441128 PMCID: PMC5800070 DOI: 10.1186/s13039-018-0363-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Syndromic obesity is an umbrella term used to describe cases where obesity occurs with additional phenotypes. It often arises as part of a distinct genetic syndrome with Prader-Willi syndrome being a classical example. These rare forms of obesity provide a unique source for identifying obesity-related genetic changes. Chromosomal microarray analysis (CMA) has allowed the characterization of new genetic forms of syndromic obesity, which are due to copy number variants (CNVs); however, CMA in large cohorts requires more study. The aim of this study was to characterize the CNVs detected by CMA in 279 patients with a syndromic obesity phenotype. RESULTS Pathogenic CNVs were detected in 61 patients (22%) and, among them, 35 had overlapping/recurrent CNVs. Genomic imbalance disorders known to cause syndromic obesity were found in 8.2% of cases, most commonly deletions of 1p36, 2q37 and 17p11.2 (5.4%), and we also detected deletions at 1p21.3, 2p25.3, 6q16, 9q34, 16p11.2 distal and proximal, as well as an unbalanced translocation resulting in duplication of the GNB3 gene responsible for a syndromic for of childhood obesity. Deletions of 9p terminal and 22q11.2 proximal/distal were found in 1% and 3% of cases, respectively. They thus emerge as being new putative obesity-susceptibility loci. We found additional CNVs in our study that overlapped with CNVs previously reported in cases of syndromic obesity, including a new case of 13q34 deletion (CHAMP1), bringing to 7 the number of patients in whom such defects have been described in association with obesity. Our findings implicate many genes previously associated with obesity (e.g. PTBP2, TMEM18, MYT1L, POU3F2, SIM1, SH2B1), and also identified other potentially relevant candidates including TAS1R3, ALOX5AP, and GAS6. CONCLUSION Understanding the genetics of obesity has proven difficult, and considerable insight has been obtained from the study of genomic disorders with obesity associated as part of the phenotype. In our study, CNVs known to be causal for syndromic obesity were detected in 8.2% of patients, but we provide evidence for a genetic basis of obesity in as many as 14% of cases. Overall, our results underscore the genetic heterogeneity in syndromic forms of obesity, which imposes a substantial challenge for diagnosis.
Collapse
Affiliation(s)
- Carla Sustek D’Angelo
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Monica Castro Varela
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Claudia Irene Emílio de Castro
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Paulo Alberto Otto
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP Brazil
| | - Charles Marques Lourenço
- Neurogenetics Unit, Clinics Hospital of Ribeirao Preto, Faculty of Medicine, University of Sao Paulo, FMRP-USP, Ribeirao Preto, SP Brazil
| | - Chong Ae Kim
- Genetic Unit, Children’s Institute, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Debora Romeo Bertola
- Genetic Unit, Children’s Institute, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Fernando Kok
- Department of Neurology, Faculty of Medicine, University of Sao Paulo, FMUSP, Sao Paulo, SP Brazil
| | - Luis Garcia-Alonso
- Department of Morphology and Genetics, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP Brazil
| | - Celia Priszkulnik Koiffmann
- Human Genome and Stem Cell Research Center (HUG-CELL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Rua do Matao no 277, Cidade Universitaria-Butanta, Sao Paulo, SP 05508-090 Brazil
| |
Collapse
|
13
|
The Identification of Microdeletion and Reciprocal Microduplication in 22q11.2 Using High-Resolution CMA Technology. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7415438. [PMID: 27123452 PMCID: PMC4830712 DOI: 10.1155/2016/7415438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/13/2016] [Indexed: 01/05/2023]
Abstract
The chromosome 22q11.2 region has long been implicated in genomic diseases. Some genomic regions exhibit numerous low copy repeats with high identity in which they provide increased genomic instability and mediate deletions and duplications in many disorders. DiGeorge Syndrome is the most common deletion syndrome and reciprocal duplications could be occurring in half of the frequency of microdeletions. We described five patients with phenotypic variability that carries deletions or reciprocal duplications at 22q11.2 detected by Chromosomal Microarray Analysis. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had clinical indication to global developmental delay and a normal karyotype. We observed in our study three microdeletions and two microduplications in 22q11.2 region with variable intervals containing known genes and unstudied transcripts as well as the LCRs that are often flanking and within this genomic rearrangement. The identification of these variants is of particular interest because it may provide insight into genes or genomic regions that are crucial for specific phenotypic manifestations and are useful to assist in the quest for understanding the mechanisms subjacent to genomic deletions and duplications.
Collapse
|
14
|
Bengoa-Alonso A, Artigas-López M, Moreno-Igoa M, Cattalli C, Hernández-Charro B, Ramos-Arroyo MA. Delineation of a recognizable phenotype for the recurrent LCR22-C to D/E atypical 22q11.2 deletion. Am J Med Genet A 2016; 170:1485-94. [PMID: 26991864 DOI: 10.1002/ajmg.a.37614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/19/2016] [Indexed: 01/10/2023]
Abstract
The 22q11.2 deletion syndrome is typically caused by haploinsufficiency of a 3 Mb region that extends from LCR22-A until LCR22-D, while the recurrent recombination between any of the LCR22-D to H causes the 22q11.2 distal deletion syndrome. Here, we describe three patients with a de novo atypical ∼1.4 Mb 22q11.2 deletion that involves LCR22-C to a region beyond D (LCR22-C to D/E), encompassing the distal portion of the typical deleted region and the proximal portion of the distal deletion. We also review six previous published patients with the same rearrangement and compare their features with those found in patients with overlapping deletions. Patients with LCR22-C to D/E deletion present a recognizable phenotype characterized by facial dysmorphic features, high frequency of cardiac defects, including conotruncal defects, prematurity, growth restriction, microcephaly, and mild developmental delay. Genotype-phenotype analysis of the patients indicates that CRKL and MAPK1 genes play an important role as causative factors for the main clinical features of the syndrome. In particular, CRKL gene seems to be involved in the occurrence of conotruncal cardiac anomalies, mainly tetralogy of Fallot. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amaya Bengoa-Alonso
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mercè Artigas-López
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Moreno-Igoa
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Claudio Cattalli
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Blanca Hernández-Charro
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Antonia Ramos-Arroyo
- Department of Medical Genetics, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
15
|
Digilio MC, Marino B. What Is New in Genetics of Congenital Heart Defects? Front Pediatr 2016; 4:120. [PMID: 27990414 PMCID: PMC5130977 DOI: 10.3389/fped.2016.00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/19/2016] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies, clinical observations, and advances in molecular genetics are contributing to the understanding of the etiology of congenital heart defects (CHDs). Several phenotype-genotype correlation studies have suggested that specific morphogenetic mechanisms put in motion by genes can result in a specific cardiac phenotype. The use of new technologies has increased the possibility of identification of new genes and chromosomal loci in syndromic and non-syndromic CHDs. There are a number of methods available for genetic research studies of CHDs, including cytogenetic analysis, linkage and association studies, copy number variation (CNV) and DNA micro-array analysis, and whole exome sequencing. The altered dosage of contiguous genes included inside CNVs can produce new syndromic CHDs, so that several different new genomic conditions have been identified. These include duplication 22q11.2 syndrome, distal 22q11.2 deletion syndrome, deletion and duplication 1q21.1, and deletion 1p36 syndrome. Molecular techniques such as whole exome sequencing have lead to the identification of new genes for monogenic syndromes with CHD, as for example in Adams-Oliver, Noonan, and Kabuki syndrome. The variable expressivity and reduced penetrance of CHDs in genetic syndromes is likely influenced by genetic factors, and several studies have been performed showing the involvement of modifier genes. It is not easy to define precisely the genetic defects underlying non-syndromic CHDs, due to the genetic and clinical heterogeneity of these malformations. Recent experimental studies have identified multiple CNVs contributing to non-syndromic CHD. The number of identified genes for non-syndromic CHDs is at this time limited, and each of the identified genes has been shown to be implicated only in a small proportion of CHD. The application of new technologies to specific cases of CHD and pedigrees with familial recurrence and filtering genes mapping in CNV regions can probably in the future add knowledge about new genes for non-syndromic CHDs.
Collapse
Affiliation(s)
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University , Rome , Italy
| |
Collapse
|
16
|
Burnside RD. 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenet Genome Res 2015; 146:89-99. [PMID: 26278718 DOI: 10.1159/000438708] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 04/13/2024] Open
Abstract
Chromosome 22q11.21 contains a cluster of low-copy repeats (LCRs), referred to as LCR22A-H, that mediate meiotic non-allelic homologous recombination, resulting in either deletion or duplication of various intervals in the region. The deletion of the DiGeorge/velocardiofacial syndrome interval LCR22A-D is the most common recurrent microdeletion in humans, with an estimated incidence of ∼1:4,000 births. Deletion of other intervals in 22q11.21 have also been described, but the literature is often confusing, as the terms 'proximal', 'nested', 'distal', and 'atypical' have all been used to describe various of the other intervals. Individuals with deletions tend to have features with widely variable expressivity, even among families. This review concisely delineates each interval and classifies the reported literature accordingly.
Collapse
Affiliation(s)
- Rachel D Burnside
- Department of Cytogenetics, Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, N.C., USA
| |
Collapse
|
17
|
Digilio MC, Versacci P, Bernardini L, Novelli A, Marino B, Dallapiccola B. Left ventricular non compaction with aortic valve anomalies: A recurrent feature of 22q11.2 distal deletion syndrome. Eur J Med Genet 2015; 58:406-8. [PMID: 26141236 DOI: 10.1016/j.ejmg.2015.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/31/2015] [Indexed: 11/26/2022]
Affiliation(s)
- M Cristina Digilio
- Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Paolo Versacci
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Laura Bernardini
- Mendel Laboratory, Casa Sollievo della Sofferenza Hospital, IRCCS, Rome and San Giovanni, Rotondo, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Barnett CP, van Bon BWM. Monogenic and chromosomal causes of isolated speech and language impairment. J Med Genet 2015; 52:719-29. [DOI: 10.1136/jmedgenet-2015-103161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
|
19
|
Probst FJ, James RA, Burrage LC, Rosenfeld JA, Bohan TP, Ward Melver CH, Magoulas P, Austin E, Franklin AIA, Azamian M, Xia F, Patel A, Bi W, Bacino C, Belmont JW, Ware SM, Shaw C, Cheung SW, Lalani SR. De novo deletions and duplications of 17q25.3 cause susceptibility to cardiovascular malformations. Orphanet J Rare Dis 2015; 10:75. [PMID: 26070612 PMCID: PMC4472615 DOI: 10.1186/s13023-015-0291-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/02/2015] [Indexed: 01/28/2023] Open
Abstract
Background Genomic disorders resulting from deletion or duplication of genomic segments are known to be an important cause of cardiovascular malformations (CVMs). In our previous study, we identified a unique individual with a de novo 17q25.3 deletion from a study of 714 individuals with CVM. Methods To understand the contribution of this locus to cardiac malformations, we reviewed the data on 60,000 samples submitted for array comparative genomic hybridization (CGH) studies to Medical Genetics Laboratories at Baylor College of Medicine, and ascertained seven individuals with segmental aneusomy of 17q25. We validated our findings by studying another individual with a de novo submicroscopic deletion of this region from Cytogenetics Laboratory at Cincinnati Children’s Hospital. Using bioinformatic analyses including protein-protein interaction network, human tissue expression patterns, haploinsufficiency scores, and other annotation systems, including a training set of 251 genes known to be linked to human cardiac disease, we constructed a pathogenicity score for cardiac phenotype for each of the 57 genes within the terminal 2.0 Mb of 17q25.3. Results We found relatively high penetrance of cardiovascular defects (~60 %) with five deletions and three duplications, observed in eight unrelated individuals. Distinct cardiac phenotypes were present in four of these subjects with non-recurrent de novo deletions (range 0.08 Mb–1.4 Mb) in the subtelomeric region of 17q25.3. These included coarctation of the aorta (CoA), total anomalous pulmonary venous return (TAPVR), ventricular septal defect (VSD) and atrial septal defect (ASD). Amongst the three individuals with variable size duplications of this region, one had patent ductus arteriosus (PDA) at 8 months of age. Conclusion The distinct cardiac lesions observed in the affected patients and the bioinformatics analyses suggest that multiple genes may be plausible drivers of the cardiac phenotype within this gene-rich critical interval of 17q25.3. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0291-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F J Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - R A James
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - L C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - J A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - T P Bohan
- Department of Neurology, Memorial Hermann Texas Medical Center, Houston, TX, USA
| | - C H Ward Melver
- Genetic Center, Children's Hospital Medical Center Of Akron, Akron, OH, USA
| | - P Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - E Austin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - A I A Franklin
- Department of Developmental Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - M Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - F Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - A Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - W Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - C Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - J W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - S M Ware
- Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - C Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - S W Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA
| | - S R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, USA.
| |
Collapse
|
20
|
Lindgren V, McRae A, Dineen R, Saulsberry A, Hoganson G, Schrift M. Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications. Mol Genet Genomic Med 2015; 3:346-53. [PMID: 26247050 PMCID: PMC4521969 DOI: 10.1002/mgg3.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
We describe six individuals with microdeletions and microduplications in the distal 22q11.2 region detected by microarray. Five of the abnormalities have breakpoints in the low-copy repeats (LCR) in this region and one patient has an atypical rearrangement. Two of the six patients with abnormalities in the region between LCR22 D–E have hearing loss, which has previously been reported only once in association with these abnormalities. We especially note the behavioral/neuropsychiatric problems, including the severity and early onset, in patients with distal 22q11.2 rearrangements. Our patients add to the genotype–phenotype correlations which are still being generated for these chromosomal anomalies.
Collapse
Affiliation(s)
- Valerie Lindgren
- Department of Pathology, University of Illinois Chicago, Illinois
| | - Anne McRae
- Department of Pediatrics, University of Illinois Chicago, Illinois
| | - Richard Dineen
- Department of Pediatrics, University of Illinois Chicago, Illinois
| | | | - George Hoganson
- Department of Pediatrics, University of Illinois Chicago, Illinois
| | - Michael Schrift
- Department of Psychiatry, University of Illinois Chicago, Illinois
| |
Collapse
|
21
|
Andrews T, Meader S, Vulto-van Silfhout A, Taylor A, Steinberg J, Hehir-Kwa J, Pfundt R, de Leeuw N, de Vries BBA, Webber C. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders. PLoS Genet 2015; 11:e1005012. [PMID: 25781962 PMCID: PMC4362763 DOI: 10.1371/journal.pgen.1005012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/17/2015] [Indexed: 12/05/2022] Open
Abstract
Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects. Developmental disorders occur in ∼3% of live births, and exhibit a broad range of abnormalities including: intellectual disability, autism, heart defects, and other neurological and morphological problems. Often, patients are grouped into genetic syndromes which are defined by a specific set of mutations and a common set of abnormalities. However, many mutations are unique to a single patient and many patients present a range of abnormalities which do not fit one of the recognized genetic syndromes, making diagnosis difficult. Using a dataset of 197 patients with systematically described abnormalities, we identified molecular pathways whose disruption was associated with specific abnormalities among many patients. Importantly, patients with mutations in the same pathway often exhibited similar co-morbid symptoms and thus the commonly disrupted pathway appeared responsible for the broad range of shared abnormalities amongst these patients. These findings support the general concept that patients with mutations in distinct genes could be etiologically grouped together through the common pathway that these mutated genes participate in, with a view to improving diagnoses, prognoses and therapeutic outcomes.
Collapse
Affiliation(s)
- Tallulah Andrews
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephen Meader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Avigail Taylor
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Julia Steinberg
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jayne Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B. A. de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail: (BBAdV); (CW)
| | - Caleb Webber
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (BBAdV); (CW)
| |
Collapse
|
22
|
Watkins SE, Meyer RE, Strauss RP, Aylsworth AS. Classification, epidemiology, and genetics of orofacial clefts. Clin Plast Surg 2014; 41:149-63. [PMID: 24607185 DOI: 10.1016/j.cps.2013.12.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Orofacial clefts (OFCs) include a broad range of facial conditions that differ in cause and disease burden. In the published literature, there is substantial ambiguity in both terminology and classification of OFCs. This article discusses the terminology and classification of OFCs and the epidemiology of OFCs. Demographic, environmental, and genetic risk factors for OFCs are described, including suggestions for family counseling. This article enables clinicians to counsel families regarding the occurrence and recurrence of OFCs. Although much of the information is detailed, it is intended to be accessible to all health professionals for use in their clinical practices.
Collapse
Affiliation(s)
- Stephanie E Watkins
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, 1700 Martin Luther King Jr Boulevard, Chapel Hill, NC, USA.
| | - Robert E Meyer
- Birth Defects Monitoring Program, Division of Public Health, North Carolina Department of Health and Human Services, State Center for Health Statistics, 222 North Dawson Street, Cotton Building, Raleigh, NC 27603, USA
| | - Ronald P Strauss
- UNC Center for AIDS Research, UNC School of Dentistry, UNC School of Medicine, University of North Carolina at Chapel Hill, 104 South Building, CB# 3000, Chapel Hill, NC 27599-3000, USA
| | - Arthur S Aylsworth
- Departments of Pediatrics and Genetics, University of North Carolina at Chapel Hill, CB# 7487, UNC Campus, Chapel Hill, NC 27599-7487, USA
| |
Collapse
|
23
|
D'Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Lourenço CM, Perez ABA, Koiffmann CP. Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 2014; 7:75. [PMID: 25411582 PMCID: PMC4236449 DOI: 10.1186/s13039-014-0075-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/19/2014] [Indexed: 01/02/2023] Open
Abstract
Background Certain rare syndromes with developmental delay or intellectual disability caused by genomic copy number variants (CNVs), either deletions or duplications, are associated with higher rates of obesity. Current strategies to diagnose these syndromes typically rely on phenotype-driven investigation. However, the strong phenotypic overlap between syndromic forms of obesity poses challenges to accurate diagnosis, and many different individual cytogenetic and molecular approaches may be required. Multiplex ligation-dependent probe amplification (MLPA) enables the simultaneous analysis of multiple targeted loci in a single test, and serves as an important screening tool for large cohorts of patients in whom deletions and duplications involving specific loci are suspected. Our aim was to design a synthetic probe set for MLPA analysis to investigate in a cohort of 338 patients with syndromic obesity deletions and duplications in genomic regions that can cause this phenotype. Results We identified 18 patients harboring copy number imbalances; 18 deletions and 5 duplications. The alterations in ten patients were delineated by chromosomal microarrays, and in the remaining cases by additional MLPA probes incorporated into commercial kits. Nine patients showed deletions in regions of known microdeletion syndromes with obesity as a clinical feature: in 2q37 (4 cases), 9q34 (1 case) and 17p11.2 (4 cases). Four patients harbored CNVs in the DiGeorge syndrome locus at 22q11.2. Two other patients had deletions within the 22q11.2 ‘distal’ locus associated with a variable clinical phenotype and obesity in some individuals. The other three patients had a recurrent CNV of one of three susceptibility loci: at 1q21.1 ‘distal’, 16p11.2 ‘distal’, and 16p11.2 ‘proximal’. Conclusions Our study demonstrates the utility of an MLPA-based first line screening test to the evaluation of obese patients presenting with syndromic features. The overall detection rate with the synthetic MLPA probe set was about 5.3% (18 out of 338). Our experience leads us to suggest that MLPA could serve as an effective alternative first line screening test to chromosomal microarrays for diagnosis of syndromic obesity, allowing for a number of loci (e.g., 1p36, 2p25, 2q37, 6q16, 9q34, 11p14, 16p11.2, 17p11.2), known to be clinically relevant for this patient population, to be interrogated simultaneously.
Collapse
Affiliation(s)
- Carla S D'Angelo
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Monica C Varela
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cláudia Ie de Castro
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Chong A Kim
- Genetics Unit, Department of Pediatrics, Children Institute, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Débora R Bertola
- Genetics Unit, Department of Pediatrics, Children Institute, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Charles M Lourenço
- Neurogenetics Unit, Department of Medical Genetics, School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Beatriz A Perez
- Department of Morphology, Medical Genetics Center, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Celia P Koiffmann
- Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. Eur J Med Genet 2014; 57:579-86. [PMID: 25195019 DOI: 10.1016/j.ejmg.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/18/2014] [Indexed: 02/07/2023]
Abstract
Congenital heart disease (CHD) is the most common form of birth defect and is the most prevalent non-infectious cause of infant death. A growing body of evidence documents that genetic defects are involved in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disease and the genetic basis underpinning CHD in an overwhelming majority of patients remain unclear. In this study, the coding exons and flanking introns of the Nkx2.6 gene, which codes for a homeodomain-containing transcription factor important for normal cardiovascular development, were sequenced in 320 unrelated patients with CHD, and two novel heterozygous Nkx2.6 mutations, p.V176M and p.K177X, were identified in two unrelated patients with CHD, respectively, including a patient with tetralogy of Fallot and a patient with double outlet of right ventricle and ventricular septal defect. The mutations were absent in 400 control chromosomes and the altered amino acids were completely conserved evolutionarily across species. Due to unknown transcriptional targets of Nkx2.6, the functional consequences of the identified mutations at transcriptional activity were evaluated by using Nkx2.5 as a surrogate. Alignment between human Nkx2.6 and Nkx2.5 proteins showed that V176M-mutant Nkx2.6 was equivalent to V182M-mutant Nkx2.5 and K177X-mutant Nkx2.6 was equal to K183X-mutant Nkx2.5, and introduction of V182M or K183X into Nkx2.5 significantly diminished its transcriptional activating function when compared with its wild-type counterpart. To our knowledge, this is the first report on the association of Nkx2.6 loss-of-function mutation with increased susceptibility to tetralogy of Fallot or double outlet of right ventricle and ventricular septal defect, providing novel insight into the molecular mechanism of CHD.
Collapse
|
25
|
Rump P, de Leeuw N, van Essen AJ, Verschuuren-Bemelmans CC, Veenstra-Knol HE, Swinkels MEM, Oostdijk W, Ruivenkamp C, Reardon W, de Munnik S, Ruiter M, Frumkin A, Lev D, Evers C, Sikkema-Raddatz B, Dijkhuizen T, van Ravenswaaij-Arts CM. Central 22q11.2 deletions. Am J Med Genet A 2014; 164A:2707-23. [PMID: 25123976 DOI: 10.1002/ajmg.a.36711] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term "central 22q11.2 deletions". In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum.
Collapse
Affiliation(s)
- Patrick Rump
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Carvalho MRS, Vianna G, Oliveira LDFS, Costa AJ, Pinheiro-Chagas P, Sturzenecker R, Zen PRG, Rosa RFM, de Aguiar MJB, Haase VG. Are 22q11.2 distal deletions associated with math difficulties? Am J Med Genet A 2014; 164A:2256-62. [PMID: 24989330 DOI: 10.1002/ajmg.a.36649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/22/2014] [Indexed: 12/27/2022]
Abstract
Approximately 6% of school-aged children have math difficulties (MD). A neurogenetic etiology has been suggested due to the presence of MD in some genetic syndromes such as 22q11.2DS. However, the contribution of 22q11.2DS to the MD phenotype has not yet been investigated. This is the first population-based study measuring the frequency of 22q11.2DS among school children with MD. Children (1,564) were identified in the schools through a screening test for language and math. Of these children, 152 (82 with MD and 70 controls) were selected for intelligence, general neuropsychological, and math cognitive assessments and for 22q11.2 microdeletion screening using MLPA. One child in the MD group had a 22q11.2 deletion spanning the LCR22-4 to LCR22-5 interval. This child was an 11-year-old girl with subtle anomalies, normal intelligence, MD attributable to number sense deficit, and difficulties in social interactions. Only 19 patients have been reported with this deletion. Upon reviewing these reports, we were able to characterize a new syndrome, 22q11.2 DS (LCR22-4 to LCR22-5), characterized by prematurity; pre- and postnatal growth restriction; apparent hypotelorism, short/upslanting palpebral fissures; hypoplastic nasal alae; pointed chin and nose; posteriorly rotated ears; congenital heart defects; skeletal abnormalities; developmental delay, particularly compromising the speech; learning disability (including MD, in one child); intellectual disability; and behavioral problems. These results suggest that 22q11.2 DS (LCR22-4 to LCR22-5) may be one of the genetic causes of MD.
Collapse
Affiliation(s)
- Maria Raquel Santos Carvalho
- Pós-Graduação em Genética, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dykes IM, van Bueren KL, Ashmore RJ, Floss T, Wurst W, Szumska D, Bhattacharya S, Scambler PJ. HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region. Circ Res 2014; 115:23-31. [PMID: 24748541 DOI: 10.1161/circresaha.115.303300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE 22q11 deletion syndrome arises from recombination between low-copy repeats on chromosome 22. Typical deletions result in hemizygosity for TBX1 associated with congenital cardiovascular disease. Deletions distal to the typically deleted region result in a similar cardiac phenotype but lack in extracardiac features of the syndrome, suggesting that a second haploinsufficient gene maps to this interval. OBJECTIVE The transcription factor HIC2 is lost in most distal deletions, as well as in a minority of typical deletions. We used mouse models to test the hypothesis that HIC2 hemizygosity causes congenital heart disease. METHODS AND RESULTS We created a genetrap mouse allele of Hic2. The genetrap reporter was expressed in the heart throughout the key stages of cardiac morphogenesis. Homozygosity for the genetrap allele was embryonic lethal before embryonic day E10.5, whereas the heterozygous condition exhibited a partially penetrant late lethality. One third of heterozygous embryos had a cardiac phenotype. MRI demonstrated a ventricular septal defect with over-riding aorta. Conditional targeting indicated a requirement for Hic2 within the Nkx2.5+ and Mesp1+ cardiovascular progenitor lineages. Microarray analysis revealed increased expression of Bmp10. CONCLUSIONS Our results demonstrate a novel role for Hic2 in cardiac development. Hic2 is the first gene within the distal 22q11 interval to have a demonstrated haploinsufficient cardiac phenotype in mice. Together our data suggest that HIC2 haploinsufficiency likely contributes to the cardiac defects seen in distal 22q11 deletion syndrome.
Collapse
Affiliation(s)
- Iain M Dykes
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Kelly Lammerts van Bueren
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Rebekah J Ashmore
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Thomas Floss
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Wolfgang Wurst
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Dorota Szumska
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Peter J Scambler
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom.
| |
Collapse
|
28
|
Thorsson T, Russell WW, El-Kashlan N, Soemedi R, Levine J, Geisler SB, Ackley T, Tomita-Mitchell A, Rosenfeld JA, Töpf A, Tayeh M, Goodship J, Innis JW, Keavney B, Russell MW. Chromosomal Imbalances in Patients with Congenital Cardiac Defects: A Meta-analysis Reveals Novel Potential Critical Regions Involved in Heart Development. CONGENIT HEART DIS 2014; 10:193-208. [PMID: 24720490 DOI: 10.1111/chd.12179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Congenital cardiac defects represent the most common group of birth defects, affecting an estimated six per 1000 births. Genetic characterization of patients and families with cardiac defects has identified a number of genes required for heart development. Yet, despite the rapid pace of these advances, mutations affecting known genes still account for only a small fraction of congenital heart defects suggesting that many more genes and developmental mechanisms remain to be identified. DESIGN In this study, we reviewed 1694 described cases of patients with cardiac defects who were determined to have a significant chromosomal imbalance (a deletion or duplication). The cases were collected from publicly available databases (DECIPHER, ISCA, and CHDWiki) and from recent publications. An additional 68 nonredundant cases were included from the University of Michigan. Cases with multiple chromosomal or whole chromosome defects (trisomy 13, 18, 21) were excluded, and cases with overlapping deletions and/or insertions were grouped to identify regions potentially involved in heart development. RESULTS Seventy-nine chromosomal regions were identified in which 5 or more patients had overlapping imbalances. Regions of overlap were used to determine minimal critical domains most likely to contain genes or regulatory elements involved in heart development. This approach was used to refine the critical regions responsible for cardiac defects associated with chromosomal imbalances involving 1q24.2, 2q31.1, 15q26.3, and 22q11.2. CONCLUSIONS The pattern of chromosomal imbalances in patients with congenital cardiac defects suggests that many loci may be involved in normal heart development, some with very strong and direct effects and others with less direct effects. Chromosomal duplication/deletion mapping will provide an important roadmap for genome-wide sequencing and genetic mapping strategies to identify novel genes critical for heart development.
Collapse
Affiliation(s)
- Thor Thorsson
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Mich, USA
| | - William W Russell
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Mich, USA
| | - Nour El-Kashlan
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Mich, USA
| | - Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Jonathan Levine
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Mich, USA
| | - Sarah B Geisler
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Mich, USA
| | - Todd Ackley
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Genetics, University of Michigan, Ann Arbor, Mich, USA
| | | | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Wash, USA
| | - Ana Töpf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marwan Tayeh
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Genetics, University of Michigan, Ann Arbor, Mich, USA
| | - Judith Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffrey W Innis
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Genetics, University of Michigan, Ann Arbor, Mich, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, Mich, USA
| | - Bernard Keavney
- Institute of Cardiovascular Sciences, Central Manchester University, Manchester, United Kingdom
| | - Mark W Russell
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Mich, USA
| |
Collapse
|
29
|
Zeitz MJ, Lerner PP, Ay F, Van Nostrand E, Heidmann JD, Noble WS, Hoffman AR. Implications of COMT long-range interactions on the phenotypic variability of 22q11.2 deletion syndrome. Nucleus 2013; 4:487-93. [PMID: 24448439 DOI: 10.4161/nucl.27364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
22q11.2 deletion syndrome (22q11DS) results from a hemizygous microdeletion on chromosome 22 and is characterized by extensive phenotypic variability. Penetrance of signs, including congenital heart, craniofacial, and neurobehavioral abnormalities, varies widely and is not well correlated with genotype. The three-dimensional structure of the genome may help explain some of this variability. The physical interaction profile of a given gene locus with other genetic elements, such as enhancers and co-regulated genes, contributes to its regulation. Thus, it is possible that regulatory interactions with elements outside the deletion region are disrupted in the disease state and modulate the resulting spectrum of symptoms. COMT, a gene within the commonly deleted ~3 Mb region has been implicated as a contributor to the neurological features frequently found in 22q11DS patients. We used this locus as bait in a 4C-seq experiment to investigate genome-wide interaction profiles in B lymphocyte and fibroblast cell lines derived from both 22q11DS and unaffected individuals. All normal B lymphocyte lines displayed local, conserved chromatin looping interactions with regions that are lost in atypical and distal deletions, which may mediate similarities between typical, atypical, and distal 22q11 deletion phenotypes. There are also distinct clusterings of cis interactions based on disease state. We identified regions of differential trans interactions present in normal, and lost in deletion-carrying, B lymphocyte cell lines. This data suggests that hemizygous chromosomal deletions such as 22q11DS can have widespread effects on chromatin organization, and may contribute to the inherent phenotypic variability.
Collapse
Affiliation(s)
- Michael J Zeitz
- Veterans Affairs Palo Alto Health Care System; Stanford University Medical School; Palo Alto, CA USA; Department of Genome Sciences; University of Washington; Seattle, WA USA; Department of Genetics and Department of Developmental Biology; Stanford University Medical Center; Stanford, CA USA; Department of Computer Science and Engineering; University of Washington; Seattle, WA USA
| | - Paula P Lerner
- Veterans Affairs Palo Alto Health Care System; Stanford University Medical School; Palo Alto, CA USA
| | - Ferhat Ay
- Department of Genome Sciences; University of Washington; Seattle, WA USA
| | - Eric Van Nostrand
- Department of Genetics and Department of Developmental Biology; Stanford University Medical Center; Stanford, CA USA
| | - Julia D Heidmann
- Veterans Affairs Palo Alto Health Care System; Stanford University Medical School; Palo Alto, CA USA
| | - William S Noble
- Department of Genome Sciences; University of Washington; Seattle, WA USA; Department of Computer Science and Engineering; University of Washington; Seattle, WA USA
| | - Andrew R Hoffman
- Veterans Affairs Palo Alto Health Care System; Stanford University Medical School; Palo Alto, CA USA
| |
Collapse
|
30
|
Atypical copy number abnormalities in 22q11.2 region: Report of three cases. Eur J Med Genet 2013; 56:515-20. [DOI: 10.1016/j.ejmg.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022]
|
31
|
Mikhail FM, Burnside RD, Rush B, Ibrahim J, Godshalk R, Rutledge SL, Robin NH, Descartes MD, Carroll AJ. The recurrent distal 22q11.2 microdeletions are often de novo and do not represent a single clinical entity: a proposed categorization system. Genet Med 2013; 16:92-100. [PMID: 23765049 DOI: 10.1038/gim.2013.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/25/2013] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The five segmental duplications (LCR22-D to -H) at the distal region of chromosome 22 band q11.2 in the region immediately distal to the DiGeorge/velocardiofacial syndrome deleted region have been implicated in the recurrent distal 22q11.2 microdeletions. To date, the distal 22q11.2 microdeletions have been grouped together as a single clinical entity despite the fact that these deletions are variable in size and position depending on the mediating LCR22s. METHODS Here, we report 13 new unrelated patients with variable size deletions in the distal 22q11.2 region as shown by cytogenomic array analyses. We compare our patients' clinical features with those of previously reported cases to better dissect the phenotypic correlations based on the deletion size and position. RESULTS Six patients had the 1.1-Mb deletion flanked by LCR22-D and -E, and presented clinically with a phenotype consistent with previously reported cases with distal 22q11.2 microdeletions. Three patients had the 1.8-Mb deletion flanked by LCR22-D and -F, and presented with a similar phenotype. Four patients had the 700-kb deletion flanked by LCR22-E and -F, and presented with a milder phenotype that lacked growth restriction and cardiovascular defects. CONCLUSION We suggest that the recurrent distal 22q11.2 microdeletions do not represent a single clinical entity, and propose categorizing these deletions into three types according to their genomic position. All three deletion types are thought to be pathogenic and are most often de novo. They all share some presenting features but also have their unique features and risks.
Collapse
Affiliation(s)
- Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachel D Burnside
- Laboratory Corporation of America, Research Triangle Park, North Carolina, USA
| | - Brooke Rush
- Laboratory Corporation of America, Research Triangle Park, North Carolina, USA
| | - Jennifer Ibrahim
- Department of Pediatrics, Division of Genetics, St. Joseph's Children's Hospital, Paterson, New Jersey, USA
| | - Robin Godshalk
- Department of Pediatrics, Division of Genetics, St. Joseph's Children's Hospital, Paterson, New Jersey, USA
| | - S Lane Rutledge
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maria D Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|