1
|
Kariminejad A, Ghaderi-Sohi S, Gholami S, Najafi K, Kariminejad R, Hennekam RCM. 5p13 microduplication in a malformed fetus and his unaffected father. Am J Med Genet A 2023; 191:370-377. [PMID: 36322476 DOI: 10.1002/ajmg.a.63030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/09/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
The 5p13 microduplication syndrome is a contiguous gene syndrome characterized by developmental delay intellectual disability, hypotonia, unusual facies with marked variability, mild limb anomalies, and in some cases brain malformations. The duplication ranges in size from 0.25 to 1.08 Mb and encompasses five genes (NIPBL, SLC1A3, CPLANE1, NUP155, and WDR70), of which NIPBL has been suggested to be the main dose sensitive gene. All patients with duplication of the complete NIPBL gene reported thus far have been de novo. Here, we report a 25-week-old male fetus with hypertelorism, wide and depressed nasal bridge, depressed nasal tip, low-set ears, clenched hands, flexion contracture of elbows, knees, and left wrist, and bilateral clubfeet, bowing and shortening of long bones and brain malformation of dorsal part of callosal body. The fetus had a 667 kb gain at 5p13.2 encompassing SLC1A3, NIPBL and exons 22-52 of CPLANE1. The microduplication was inherited from the healthy father, in whom no indication for mosaicism was detected. The family demonstrates that incomplete penetrance of 5p13 microduplication syndrome may occur which is important in genetic counseling of families with this entity.
Collapse
Affiliation(s)
| | | | - Soheila Gholami
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Kimia Najafi
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | | | - Raoul C M Hennekam
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tian Q, Xu LL, Li DZ. Parental germline mosaic transmission of 5p13.2 microduplication in two siblings of a Chinese family. J OBSTET GYNAECOL 2021; 42:701-703. [PMID: 34689684 DOI: 10.1080/01443615.2021.1959532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qi Tian
- Prenatal Diagnosis Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Li Xu
- Prenatal Diagnosis Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnosis Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
3
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Pettersson M, Eisfeldt J, Syk Lundberg E, Lundin J, Lindstrand A. Flanking complex copy number variants in the same family formed through unequal crossing-over during meiosis. Mutat Res 2018; 812:1-4. [PMID: 30384002 DOI: 10.1016/j.mrfmmm.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/08/2018] [Indexed: 05/22/2023]
Abstract
Two phenomena that have been described in germline complex genomic rearrangements (CGRs) formation are chromothripsis and chromoanasynthesis, characterized by distinct features such as the orientation and copy number of the involved fragments. Herein we present different CGRs on chromosome 5p in a mother and her daughter that through unequal crossing-over during meiosis has evolved from a chromothriptic rearrangement in the mother into another complex rearrangement in her daughter involving both deletions and duplications. Initially, both rearrangements were classified as simple copy number variants, but follow-up studies using whole-genome sequencing revealed a much more complex nature of both rearrangements and enabled us to decipher the biological process involved in the formation of the rearrangement found in the daughter. In conclusion, these two cases highlight the need of analyzing the inheritance patterns of CGRs, and provide an example of a disease-causing CGR formed through multiple genetic events.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Tesner P, Drabova J, Stolfa M, Kudr M, Kyncl M, Moslerova V, Novotna D, Kremlikova Pourova R, Kocarek E, Rasplickova T, Sedlacek Z, Vlckova M. A boy with developmental delay and mosaic supernumerary inv dup(5)(p15.33p15.1) leading to distal 5p tetrasomy - case report and review of the literature. Mol Cytogenet 2018; 11:29. [PMID: 29760779 PMCID: PMC5941596 DOI: 10.1186/s13039-018-0377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background With only 11 patients reported, 5p tetrasomy belongs to rare postnatal findings. Most cases are due to small supernumerary marker chromosomes (sSMCs) or isochromosomes. The patients share common but unspecific symptoms such as developmental delay, seizures, ventriculomegaly, hypotonia, and fifth finger clinodactyly. Simple interstitial duplications leading to trisomies of parts of 5p are much more frequent and better described. Duplications encompassing 5p13.2 cause a defined syndrome with macrocephaly, distinct facial phenotype, heart defects, talipes equinovarus, feeding difficulties, respiratory distress and anomalies of the central nervous system, developmental delay and hypotonia. Case presentation We present a boy with dysmorphic features, developmental delay, intellectual disability and congenital anomalies, and a mosaic sSMC inv dup(5)(p15.33p15.1). He is the fourth and the oldest reported patient with distal 5p tetrasomy. His level of mosaicism was significantly different in lymphocytes (13.2%) and buccal cells (64.7%). The amplification in our patient is smaller than that in the three previously published patients but the only phenotype difference is the absence of seizures in our patient. Conclusions Our observations indicate that for the assessment of prognosis, especially with respect to intellectual functioning, the level of mosaicism could be more important than the extent of amplification and the number of extra copies. Evaluation of the phenotypical effect of rare chromosomal aberrations is challenging and each additional case is valuable for refinement of the genotype-phenotype correlation. Moreover, our patient demonstrates that if the phenotype is severe and if the level of sSMC mosaicism is low in lymphocytes, other tissues should be tested. Electronic supplementary material The online version of this article (10.1186/s13039-018-0377-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel Tesner
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Jana Drabova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Miroslav Stolfa
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martin Kudr
- 2Department of Paediatric Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martin Kyncl
- 3Department of Radiology, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Veronika Moslerova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Drahuse Novotna
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Radka Kremlikova Pourova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Eduard Kocarek
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Tereza Rasplickova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Zdenek Sedlacek
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Marketa Vlckova
- 1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic
| |
Collapse
|
6
|
Armstrong ME, Weaver DD, Lah MD, Vance GH, Landis BJ, Ware SM, Helm BM. Novel phenotype of 5p13.3-q11.2 duplication resulting from supernumerary marker chromosome 5: implications for management and genetic counseling. Mol Cytogenet 2018; 11:23. [PMID: 29599822 PMCID: PMC5870180 DOI: 10.1186/s13039-018-0372-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Background Supernumerary marker chromosomes derived from chromosome 5 (SMC5) and 5p13 duplication syndrome are rare disorders, and phenotypic descriptions of patients are necessary to better define genotype-phenotype correlations for accurate, comprehensive genetic counseling. The purpose of this study is to highlight the unique findings of a patient with a 5p13.3-q11.2 duplication arising from a SMC5 and compare and contrast the phenotype with cases in the literature. Case presentation We report on an adult male with a 22 Mb duplication of chromosome 5p13.3-q11.2 resulting from a small SMC5. The patient has a history of prenatal polyhydramnios, dysmorphic features, respiratory issues, talipes equinovarus, hypotonia, developmental delay, and autistic features. The patient also has novel features of aortic dilation, pectus excavatum, kyphoscoliosis, and skin striae, suggestive of a connective tissue disorder. Despite these features he did not meet clinical diagnostic criteria for a well-characterized connective tissue disorder. Additional molecular genetic testing for syndromic and non-syndromic aortic aneurysms was negative. Conclusions Many of the patient’s features are consistent with individuals reported with 5p13 duplication syndrome and similar cases of SMC5, including polyhydramnios, macrocephaly, dolichocephaly, pre-auricular pits, arachnodactyly, respiratory problems, and developmental delays. It is unclear if the patient’s unique features of aortic dilation, pectus excavatum, kyphoscoliosis, and skin striae could be novel features of the SMC5 given its rarity and the few well-phenotyped adults in the literature. This report reviews the literature and provides additional phenotypic information to define the genotype-phenotype correlation of SMC5 and 5p13 duplication syndrome.
Collapse
Affiliation(s)
- Margaret E Armstrong
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,3Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa USA
| | - David D Weaver
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA
| | - Melissa D Lah
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA
| | - Gail H Vance
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,2Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Benjamin J Landis
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,2Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Stephanie M Ware
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA.,2Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Benjamin M Helm
- 1Department of Medical and Molecular Genetics and Department of Pediatrics, Indiana University School of Medicine, 550 N. University Blvd, AOC 5001, Indianapolis, Indiana 46202 USA
| |
Collapse
|
7
|
Deriziotis P, Fisher SE. Speech and Language: Translating the Genome. Trends Genet 2017; 33:642-656. [DOI: 10.1016/j.tig.2017.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023]
|
8
|
Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev 2017; 18:603-634. [PMID: 28346723 DOI: 10.1111/obr.12531] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/29/2022]
Abstract
Syndromic monogenic obesity typically follows Mendelian patterns of inheritance and involves the co-presentation of other characteristics, such as mental retardation, dysmorphic features and organ-specific abnormalities. Previous reviews on obesity have reported 20 to 30 syndromes but no systematic review has yet been conducted on syndromic obesity. We searched seven databases using terms such as 'obesity', 'syndrome' and 'gene' to conduct a systematic review of literature on syndromic obesity. Our literature search identified 13,719 references. After abstract and full-text review, 119 relevant papers were eligible, and 42 papers were identified through additional searches. Our analysis of these 161 papers found that 79 obesity syndromes have been reported in literature. Of the 79 syndromes, 19 have been fully genetically elucidated, 11 have been partially elucidated, 27 have been mapped to a chromosomal region and for the remaining 22, neither the gene(s) nor the chromosomal location(s) have yet been identified. Interestingly, 54.4% of the syndromes have not been assigned a name, whereas 13.9% have more than one name. We report on organizational inconsistencies (e.g. naming discrepancies and syndrome classification) and provide suggestions for improvements. Overall, this review illustrates the need for increased clinical and genetic research on syndromes with obesity.
Collapse
Affiliation(s)
- Y Kaur
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - W T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
9
|
Lucarelli E, Pasca MG, Fanizza I, Trabacca A. Electroclinical characteristics and neuropsychological profile of a female child with chromosome 5p13.2 duplication syndrome. Neurol Sci 2017; 38:915-917. [PMID: 28108830 DOI: 10.1007/s10072-017-2825-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Elisabetta Lucarelli
- Unit for Severe Disabilities in Developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Scientific Institute I.R.C.C.S. "Eugenio Medea", "La Nostra Famiglia", Brindisi Research Centre, Ex Complesso Ospedaliero "A. Di Summa", Piazza "A. Di Summa", 72100, Brindisi, Italy
| | - Maria Grazia Pasca
- Unit for Severe Disabilities in Developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Scientific Institute I.R.C.C.S. "Eugenio Medea", "La Nostra Famiglia", Brindisi Research Centre, Ex Complesso Ospedaliero "A. Di Summa", Piazza "A. Di Summa", 72100, Brindisi, Italy
| | - Isabella Fanizza
- Unit for Severe Disabilities in Developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Scientific Institute I.R.C.C.S. "Eugenio Medea", "La Nostra Famiglia", Brindisi Research Centre, Ex Complesso Ospedaliero "A. Di Summa", Piazza "A. Di Summa", 72100, Brindisi, Italy
| | - Antonio Trabacca
- Unit for Severe Disabilities in Developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Scientific Institute I.R.C.C.S. "Eugenio Medea", "La Nostra Famiglia", Brindisi Research Centre, Ex Complesso Ospedaliero "A. Di Summa", Piazza "A. Di Summa", 72100, Brindisi, Italy.
| |
Collapse
|
10
|
Yuan H, Zhang L, Chen M, Zhu J, Meng Z, Liang L. A de novo triplication on 2q22.3 including the entire ZEB2 gene associated with global developmental delay, multiple congenital anomalies and behavioral abnormalities. Mol Cytogenet 2015; 8:99. [PMID: 26705424 PMCID: PMC4690300 DOI: 10.1186/s13039-015-0206-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mowat-Wilson syndrome (MWS) is a genetic condition characterized by distinctive facial features, moderate to severe intellectual disability, developmental delay and multiple congenital anomalies. MWS is caused by heterozygous mutations or deletions of the ZEB2 gene located on chromosome 2q22.3. At present, over 190 cases with mutations and deletions involving the ZEB2 gene have been reported, but triplication or duplication of reciprocal region of Mowat-Wilson syndrome has never been reported. CASE PRESENTATION Here we report a 2-year-2-month-old boy carrying a de novo 2.9 Mb complex copy number gain at 2q22.3 involving triplication of ZEB2 gene. The boy is characterized by intrauterine growth retardation, hypotonia, cognitive impairment, multiple congenital anomalies and behavioral abnormalities. CONCLUSION This case provides evidence that triplication of ZEB2 gene may be clinical significance and ZEB2 gene is likely to be a dosage sensitive gene.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou, 510330, Guangdong China ; KingMed School of Laboratory Medicine Guangzhou Medical University, Guangzhou, 510330, Guangdong China
| | - Lina Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong China
| | - Mengfan Chen
- Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou, 510330, Guangdong China
| | - Junping Zhu
- Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou, 510330, Guangdong China
| | - Zhe Meng
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong China
| | - Liyang Liang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong China
| |
Collapse
|
11
|
Walters-Sen LC, Windemuth K, Angione K, Nandhlal J, Milunsky JM. Familial transmission of 5p13.2 duplication due to maternal der(X)ins(X;5). Eur J Med Genet 2015; 58:305-9. [PMID: 25858703 DOI: 10.1016/j.ejmg.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
Abstract
Submicroscopic duplications of 5p13 have been recently reported in several cases, warranting the description of a new clinical entity (Chromosome 5p13 Duplication Syndrome; MIM 613174). These microduplications, while variable in size, all contain at least part of the NIPBL gene. Patients with duplications in this region present with intellectual disability/developmental delay (ID/DD) and dysmorphic facies. In addition, skeletal and brain abnormalities have been variably reported, as well as propensity for obesity in adulthood and hypotonia. We report a family with two affected sons and two affected daughters, each carrying a duplication at 5p13.2 encompassing the 3' portion of SLC1A3 and the 5' portion of NIPBL. Upon confirming the SNP microarray finding by FISH in the proband, it was discovered that the 5p13.2 duplication was located on the short arm of the X chromosome. Further FISH studies on the family demonstrated that all affected children and their mother carried a derivative X chromosome with insertion of material from 5p13.2 into the intermediate region of Xp [der(X)ins(X;5)(p2?2.1;p13.2p13.2)]. To our knowledge, this is the first report of an inherited duplication of 5p13.2 with multiple affected family members. This family underscores the need to confirm array findings by FISH, both in the proband and family members, to discern implications for pathogenicity and more accurately define the recurrence risk.
Collapse
|
12
|
Leroy C, Jacquemont ML, Doray B, Lamblin D, Cormier-Daire V, Philippe A, Nusbaum S, Patrat C, Steffann J, Colleaux L, Vekemans M, Romana S, Turleau C, Malan V. Xq25 duplication: the crucial role of the STAG2
gene in this novel human cohesinopathy. Clin Genet 2015; 89:68-73. [DOI: 10.1111/cge.12567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 01/24/2023]
Affiliation(s)
- C. Leroy
- Service de Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
| | - M.-L. Jacquemont
- Service de Néonatologie; Centre Hospitalier Universitaire de la Réunion; Saint-Pierre France
| | - B. Doray
- Service de Génétique; Centre Hospitalier Universitaire de La Réunion, Hôpital Félix Guyon; Saint-Denis France
| | - D. Lamblin
- Fondation Père Favron; CAMSP; Saint-Louis France
| | - V. Cormier-Daire
- Service de Génétique; Hôpital Necker-Enfants Malades; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
| | - A. Philippe
- Service de Génétique; Hôpital Necker-Enfants Malades; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
- Institut IMAGINE; INSERM UMR_S1163, Hôpital Necker-Enfants Malades; Paris France
| | - S. Nusbaum
- Service de Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
| | - C. Patrat
- Laboratoire de Biologie De la Reproduction; Groupe Hospitalier Bichat-Claude Bernard; Paris France
| | - J. Steffann
- Service de Génétique; Hôpital Necker-Enfants Malades; Paris France
| | - L. Colleaux
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
- Institut IMAGINE; INSERM UMR_S1163, Hôpital Necker-Enfants Malades; Paris France
| | - M. Vekemans
- Service de Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
| | - S. Romana
- Service de Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
| | - C. Turleau
- Service de Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
| | - V. Malan
- Service de Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
- Institut IMAGINE; INSERM UMR_S1163, Hôpital Necker-Enfants Malades; Paris France
| |
Collapse
|
13
|
Cheng YW, Tan CA, Minor A, Arndt K, Wysinger L, Grange DK, Kozel BA, Robin NH, Waggoner D, Fitzpatrick C, Das S, Del Gaudio D. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion. Mol Genet Genomic Med 2013; 2:115-23. [PMID: 24689074 PMCID: PMC3960053 DOI: 10.1002/mgg3.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 12/24/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Christopher A Tan
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Agata Minor
- Department of Pathology, University of Chicago Chicago, Illinois
| | - Kelly Arndt
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Latrice Wysinger
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Dorothy K Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Beth A Kozel
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham Birmingham, Alabama
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | | - Soma Das
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | |
Collapse
|