1
|
Bayram N, Bayram AK, Per H, Gümüş H, Ozsaygili C, Doğan MS, Çağlayan AO. Analysis of genotype-phenotype correlation in Walker-Warburg syndrome with a novel CRPPA mutation in different clinical manifestations. Eur J Ophthalmol 2021; 32:NP71-NP76. [PMID: 33977792 DOI: 10.1177/11206721211016306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Walker-Warburg syndrome (WWS) is a rare autosomal recessive disorder characterized by congenital muscular dystrophy and severe brain and eye malformations. This study aims to analyze genotype-phenotype correlations in WWS with a novel cytidine diphosphate-l-ribitol pyrophosphorylase A (CRPPA) mutation in different clinical manifestations. CASE DESCRIPTION We report a girl with a presentation of multiple brain and ocular anomalies. Her ophthalmological evaluation showed a shallow anterior chamber, cortical cataract, iris hypoplasia, persistent hyperplastic primary vitreous in the right eye, punctate cataract, iris hypoplasia, primary congenital glaucoma, and a widespread loss of fundus pigmentation in the left eye. She was hypotonic, and her deep tendon reflexes were absent. Laboratory investigations showed high serum levels of serum creatine kinase. Brain magnetic resonance imaging demonstrated hydrocephalus, agenesis of the corpus callosum, retrocerebellar cyst, cerebellar dysplasia and hypoplasia, cobblestone lissencephaly, and hypoplastic brainstem. Whole exome sequencing revealed a novel homozygous nonsense mutation in the first exon of the CRPPA gene (NM_001101426.4, c.217G>T, p.Glu73Ter). CONCLUSIONS The study findings expand the phenotypic variability of the ocular manifestations in the CRPPA gene-related WWS. Iris hypoplasia can be a part of clinical manifestations of the CRPPA gene-related WWS. The uncovering of the genes associated with ocular features can provide preventative methods, early diagnosis, and improved therapeutic strategies.
Collapse
Affiliation(s)
- Nurettin Bayram
- Department of Ophthalmology, University of Health Sciences, Kayseri City Training and Research Hospital, Kayseri, Turkey
| | - Ayşe Kaçar Bayram
- Department of Pediatrics, Division of Pediatric Neurology, University of Health Sciences, Kayseri City Training and Research Hospital, Kayseri, Turkey
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gümüş
- Department of Pediatrics, Division of Pediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Cemal Ozsaygili
- Department of Ophthalmology, University of Health Sciences, Kayseri City Training and Research Hospital, Kayseri, Turkey
| | - Mehmet Said Doğan
- Department of Pediatric Radiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Alharbi S, Alhashem A, Alkuraya F, Kashlan F, Tlili-Graiess K. Neuroimaging manifestations and genetic heterogeneity of Walker-Warburg syndrome in Saudi patients. Brain Dev 2021; 43:380-388. [PMID: 33199158 DOI: 10.1016/j.braindev.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Walker-Warburg syndrome (WWS), an autosomal recessive disease, is the most severe phenotype of congenital muscular dystrophies. Its diagnosis remains primarily clinical and radiological. Identification of its causative variants will assist genetic counseling. We aim to describe genetic and neuroimaging findings of WWS and investigate the correlation between them. METHODS We retrospectively reviewed the clinical, genetic and neuroimaging findings of eleven Saudi neonates diagnosed with WWS between April 2012 and December 2018 in a single tertiary care center. Correlation between neuroimaging and genetic findings was investigated. RESULTS All patients had macrocephaly except one who had intrauterine growth restriction. Dysmorphic features were identified in nearly half of the patients. Creatine kinase levels were available in nine patients and were always elevated. Homozygous pathogenic variants were identified in all patients spanning POMT1 (n = 5), TMEM5 (n = 3), ISPD (n = 2) and POMT2 (n = 1) including one patient who had a dual molecular diagnosis of ISPD and PGAP2. On neuroimaging, all patients showed cobblestone cortex, classical infratentorial findings, and hydrocephalus. Other cerebral cortical malformations included subependymal heterotopia, polymicrogyria and open-lip schizencephaly in four, two and one patients, respectively. Buphthalmos and microphthalmia were the most prevalent orbital findings and found in all patients either unilaterally or bilaterally. CONCLUSION WWS is a genetically heterogeneous disorder among Saudis. The case with an additional PGAP2-related phenotype exemplifies the increased risk of dual autosomal recessive disorders in consanguineous populations. MRI is excellent in demonstrating spectrum of WWS brain and orbital malformations; however, no definite correlation could be found between the MRI findings and the genetic variant.
Collapse
Affiliation(s)
- Sara Alharbi
- Neuroradiology Section, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fowzan Alkuraya
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fawaz Kashlan
- Division of Neonatology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kalthoum Tlili-Graiess
- Neuroradiology Section, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Brock S, Cools F, Jansen AC. Neuropathology of genetically defined malformations of cortical development-A systematic literature review. Neuropathol Appl Neurobiol 2021; 47:585-602. [PMID: 33480109 PMCID: PMC8359484 DOI: 10.1111/nan.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
AIMS Malformations of cortical development (MCD) include a heterogeneous spectrum of clinical, imaging, molecular and histopathological entities. While the understanding of genetic causes of MCD has improved with the availability of next-generation sequencing modalities, genotype-histopathological correlations remain limited. This is the first systematic review of molecular and neuropathological findings in patients with MCD to provide a comprehensive overview of the literature. METHODS A systematic review was performed between November 2019 and February 2020. A MEDLINE search was conducted for 132 genes previously linked to MCD in order to identify studies reporting macroscopic and/or microscopic findings in patients with a confirmed genetic cause. RESULTS Eighty-one studies were included in this review reporting neuropathological features associated with pathogenic variants in 46 genes (46/132 genes, 34.8%). Four groups emerged, consisting of (1) 13 genes with well-defined histological-genotype correlations, (2) 27 genes for which neuropathological reports were limited, (3) 5 genes with conflicting neuropathological features, and (4) 87 genes for which no histological data were available. Lissencephaly and polymicrogyria were reported most frequently. Associated brain malformations were variably present, with abnormalities of the corpus callosum as most common associated feature. CONCLUSIONS Neuropathological data in patients with MCD with a defined genetic cause are available only for a small number of genes. As each genetic cause might lead to unique histopathological features of MCD, standardised thorough neuropathological assessment and reporting should be encouraged. Histological features can help improve the understanding of the pathogenesis of MCD and generate hypotheses with impact on further research directions.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
4
|
Yang H, Cai F, Liao H, Gan S, Xiao T, Wu L. Case Report: ISPD Gene Mutation Leads to Dystroglycanopathies: Genotypic Phenotype Analysis and Treatment Exploration. Front Pediatr 2021; 9:710553. [PMID: 34485198 PMCID: PMC8416436 DOI: 10.3389/fped.2021.710553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
ISPD gene mutation-related diseases have high clinical and genetic heterogeneity, and no studies have yet reported any effective treatments. We describe six patients with dystroglycanopathies caused by ISPD gene mutations and analyze their genotypes and phenotypes to explore possible effective treatments. Our results confirm that the phenotype of limb-girdle muscular dystrophies can be easily misdiagnosed as Duchenne muscular dystrophy and that exon deletions of ISPD gene are relatively common. Moreover, low-dose prednisone therapy can improve patients' exercise ability and prolong survival and may be a promising new avenue for ISPD therapy.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Fang Cai
- Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Siyi Gan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
5
|
El-Dessouky SH, Hosny H, Elarab AE, Issa MY. Prenatal presentation of Walker–Warburg syndrome with a POMT2 mutation: an extended fetal phenotype. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00093-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Walker–Warburg syndrome (WWS) is a rare, lethal, genetically, and clinically heterogeneous congenital muscular dystrophy resulting from defective glycosylation of α-dystroglycan (α-DG) and is associated with both cranial and ocular malformations. Prenatal detection of posterior fossa anomalies in association with hydrocephalus are nonspecific, however, an additional finding of eye anomalies are typical for WWS. The purpose of this report is to elucidate the pattern of associated malformations in a fetus with WWS born to 3rd degree consanguineously married couple. Additionally, the fetal ultrasonography revealed congenital heart disease, clenched hands, and talipes equinovarus; these findings have not been previously reported and represent an expansion of prenatal spectrum associated with WWS.
Case presentation
We report on a specific sonographic pattern of congenital anomalies including hydrocephalus, agenesis of corpus callosum, and Dandy–Walker malformation. Ocular abnormalities include microphthalmia, cataract, and an echoic structure suggestive of persistent primary vitreous. Other features include congenital heart disease, unilateral multicystic kidney, and previously unreported findings of bilateral clenched hands and talipes equinovarus. The molecular analysis detected a homozygous splicing mutation, c.924-2A>C, in the POMT2 gene; this variant segregated with the phenotype.
Conclusion
WWS syndrome has characteristic prenatal ultrasound findings which can improve the prenatal identification of this condition and help in guiding the molecular diagnosis and counseling. The detection of bilateral clenched hands and talipes equinovarus is a novel finding that further expands the phenotypic spectrum of WWS.
Collapse
|
6
|
Gençpınar P, Uyanık G, Haspolat Ş, Oygür N, Duman Ö. Clinical and Molecular Manifestations of Congenital Muscular Alpha-Dystroglycanopathy due to an ISPD Gene Mutation. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09831-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Miao A, Zhang K, Yu J, He W, Lu Y, Zhu X. How many challenges we may encounter in anterior megalophthalmos with white cataract: a case report. BMC Ophthalmol 2019; 19:122. [PMID: 31146719 PMCID: PMC6543662 DOI: 10.1186/s12886-019-1133-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Anterior megalophthalmos is a rare congenital disease which mainly features enlargement of the anterior segment. Cataract surgeries in anterior megalophthalmos can be challenging due to the anatomical anomalies while the studies upon the surgical design have been less integrated. Case presentation A 37-year-old woman presented with progressively blurred vision in the right eye after a transient fever 10 months ago. Her ocular history included hypermetropia with a spherical equivalent of + 4.00 OU. The review of systems showed bilateral varus deformity of distal interphalangeal joints on the little fingers. The patient denied family history of hereditary ocular diseases and her sister was born with uterus didelphys. On initial examinations, the corrected distance visual acuity was hand motion OD and 20/33 OS. Her intraocular pressure was 15 mmHg OD and 16 mmHg OS. Horizontal corneal diameter was 14 mm OD and 13.88 mm OS and axial length was 24.87 mm OD and 25 mm OS. Anterior segment photography showed bilateral iridal atrophy with deficiency in pupillary dilation and white cortically mature cataract in the right eye. Inspection by anterior segment optical coherence tomography indicated bilateral augmented anterior chambers with backward iridal concave on horizontal orientation. Ultrasound biomicroscopy showed partially peripheral anterior synechiae and pectinate ligaments at chamber angle in both eyes and opacified lens with the apparently elongated suspensory ligaments in the right eye. A deliberately selected 1-piece foldable intraocular lens (IOL) with frame haptics was implanted after phacoemulsification for good IOL stability. During the follow-up, the visual rehabilitation appeared relatively good and a lower degree of IOL dislocation comparing with existing reports was verified by OPD-Scan III aberrometry. Conclusions We presented the challenges and the original findings from a case of congenital anterior megalophthalmos with white cataract who underwent phacoemulsification and IOL implantation. This is the first report describing the comparison of the different IOL power calculation formulas in anterior megalophthalmos. Compared to the SRK/T and the Holladay II formulas, the Haigis formula could be a more accurate choice for the IOL calculation in anterior megalophthalmos according to our case. Moreover, the deliberate selection of IOLs is essential for IOL stability in these patients.
Collapse
Affiliation(s)
- Ao Miao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Keke Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jifeng Yu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenwen He
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.,Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Lu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Xiangjia Zhu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
8
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Nabhan MM, ElKhateeb N, Braun DA, Eun S, Saleem SN, YungGee H, Hildebrandt F, Soliman NA. Cystic kidneys in fetal Walker-Warburg syndrome with POMT2 mutation: Intrafamilial phenotypic variability in four siblings and review of literature. Am J Med Genet A 2017; 173:2697-2702. [PMID: 28815891 DOI: 10.1002/ajmg.a.38393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 11/11/2022]
Abstract
Walker-Warburg syndrome (WWS) is a severe form of congenital muscular dystrophy secondary to α-dystroglycanopathy with muscle, brain, and eye abnormalities often leading to death in the first weeks of life. It is transmitted in an autosomal recessive pattern, and has been linked to at least 15 different genes; including protein O-mannosyltransferase 1 (POMT1), protein O-mannosyltransferase 2 (POMT2), protein O-mannose beta-1,2-N acetylglucosaminyltransferase (POMGNT1), fukutin (FKTN), isoprenoid synthase domain-containing protein (ISPD), and other genes. We report on a consanguineous family with four consecutive siblings affected by this condition with lethal outcome in three (still birth), and termination of the fourth pregnancy based on antenatal MRI identification of brain and kidney anomalies that heralded proper and deep clinical phenotyping. The diagnosis of WWS was suggested based on the unique collective phenotype comprising brain anomalies in the form of lissencephaly, subcortical/subependymal heterotopia, and cerebellar hypoplasia shared by all four siblings; microphthalmia in one sibling; and large cystic kidneys in the fetus and another sibling. Other unshared neurological abnormalities included hydrocephalus and Dandy-Walker malformation. Whole exome sequencing of the fetus revealed a highly conserved missense mutation in POMT2 that is known to cause WWS with brain and eye anomalies.In conclusion, the heterogeneous clinical presentation in the four affected conceptions with POMT2 mutation expands the current clinical spectrum of POMT2-associated WWS to include large cystic kidneys; and confirms intra-familial variability in terms of brain, kidney, and eye anomalies.
Collapse
Affiliation(s)
- Marwa M Nabhan
- Department of Pediatrics, Centre of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt.,Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Nour ElKhateeb
- Department of Pediatrics, Centre of Pediatric Neurology & Metabolic diseases, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sungho Eun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sahar N Saleem
- Department of Radiology, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Heon YungGee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neveen A Soliman
- Department of Pediatrics, Centre of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt.,Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| |
Collapse
|
10
|
Stoklasova J, Kaprova J, Trkova M, Nedomova V, Zemkova D, Matyskova J, Soucek O, Sumnik Z, Lebl J. A Rare Variant of Turner Syndrome in Four Sequential Generations: Effect of the Interplay of Growth Hormone Treatment and Estrogens on Body Proportion. Horm Res Paediatr 2017; 86:349-356. [PMID: 27459301 DOI: 10.1159/000448097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Terminal Xp deletion leads to SHOX haploinsufficiency, and when it exceeds Xp22.33 it causes a variant of Turner syndrome (TS) in which gonadal function is preserved and short stature constitutes the major clinical feature. CASE REPORT We present a family with vertical transmission of TS that affected six women in four sequential generations. The karyotype was defined as a combination of terminal Xp deletion and terminal Xq duplication: 46,X,rec(X)inv(p21.1q27.3). All affected women had short stature, but had developed spontaneous puberty and normal fertility. Generation IV exclusively received recombinant human growth hormone (rhGH). We investigated the effect of rhGH treatment on skeletal growth and body proportion via the comparison of auxological data from an untreated 39.7-year-old mother to her 14.8-year-old rhGH-treated daughter. The adult height of the daughter was substantially better than that of the mother [160.3 cm (-0.8 SDS) and 150.0 cm (-2.7 SDS), respectively]; however, the disproportion progressed following rhGH treatment and ultimately led to a worse trunk-to-extremities ratio compared with the mother (4.8 and 3.7 SDS, respectively). CONCLUSION This rare family confirms the vertical transmission of TS spanning multiple generations. The combination of endogenous estrogen production and exogenous rhGH administration in women with SHOX haploinsufficiency may worsen their body disproportion.
Collapse
Affiliation(s)
- Judith Stoklasova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, and GENNET, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|