1
|
Zhao ZY, Siow Y, Liu LY, Li X, Wang HL, Lei ZM. The SPARC-related modular calcium binding 1 ( Smoc1 ) regulated by androgen is required for mouse gubernaculum development and testicular descent. Asian J Androl 2025; 27:44-51. [PMID: 39119686 PMCID: PMC11784950 DOI: 10.4103/aja202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Testicular descent occurs in two consecutive stages: the transabdominal stage and the inguinoscrotal stage. Androgens play a crucial role in the second stage by influencing the development of the gubernaculum, a structure that pulls the testis into the scrotum. However, the mechanisms of androgen actions underlying many of the processes associated with gubernaculum development have not been fully elucidated. To identify the androgen-regulated genes, we conducted large-scale gene expression analyses on the gubernaculum harvested from luteinizing hormone/choriogonadotropin receptor knockout ( Lhcgr KO) mice, an animal model of inguinoscrotal testis maldescent resulting from androgen deficiency. We found that the expression of secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 ( Smoc1 ) was the most severely suppressed at both the transcript and protein levels, while its expression was the most dramatically induced by testosterone administration in the gubernacula of Lhcgr KO mice. The upregulation of Smoc1 expression by testosterone was curtailed by the addition of an androgen receptor antagonist, flutamide. In addition, in vitro studies demonstrated that SMOC1 modestly but significantly promoted the proliferation of gubernacular cells. In the cultures of myogenic differentiation medium, both testosterone and SMOC1 enhanced the expression of myogenic regulatory factors such as paired box 7 ( Pax7 ) and myogenic factor 5 ( Myf5 ). After short-interfering RNA-mediated knocking down of Smoc1 , the expression of Pax7 and Myf5 diminished, and testosterone alone did not recover, but additional SMOC1 did. These observations indicate that SMOC1 is pivotal in mediating androgen action to regulate gubernaculum development during inguinoscrotal testicular descent.
Collapse
Affiliation(s)
- Zhi-Yi Zhao
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yong Siow
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Ling-Yun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hong-Liang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhen-Min Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus IM, Hong G, Fromme JC, Liu J. SMOC-1 interacts with both BMP and glypican to regulate BMP signaling in C. elegans. PLoS Biol 2023; 21:e3002272. [PMID: 37590248 PMCID: PMC10464977 DOI: 10.1371/journal.pbio.3002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Secreted modular calcium-binding proteins (SMOCs) are conserved matricellular proteins found in organisms from Caenorhabditis elegans to humans. SMOC homologs characteristically contain 1 or 2 extracellular calcium-binding (EC) domain(s) and 1 or 2 thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate proteoglycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans. We showed that CeSMOC-1 binds to the heparin sulfate proteoglycan GPC3 homolog LON-2/glypican, as well as the mature domain of the BMP2/4 homolog DBL-1. Moreover, CeSMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between CeSMOC-1 and LON-2/glypican is mediated specifically by the EC domain of CeSMOC-1, while the full interaction between CeSMOC-1 and DBL-1/BMP requires full-length CeSMOC-1. We provide both in vitro biochemical and in vivo functional evidence demonstrating that CeSMOC-1 functions both negatively in a LON-2/glypican-dependent manner and positively in a DBL-1/BMP-dependent manner to regulate BMP signaling. We further showed that in silico, Drosophila and vertebrate SMOC proteins can also bind to mature BMP dimers. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Timothy Y. Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Isabel M. Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Garam Hong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Yoshikawa Y, Yamakawa C, Shimabukuro T, Kinjo H, Fukase S, Oshiro H, Katsuki R, Tome Y, Nishida K. Progressive scoliosis associated with microphthalmia with limb anomalies: A case report. Medicine (Baltimore) 2023; 102:e33414. [PMID: 36961133 PMCID: PMC10035995 DOI: 10.1097/md.0000000000033414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
RATIONALE Microphthalmia with limb anomalies is a rare, autosomal recessive, multiple congenital anomaly syndrome. Patients with this syndrome particularly present with monocular or bilateral anophthalmia/microphthalmia and distal limb anomalies. However, details regarding associated spinal deformities have not been fully elucidated. PATIENT CONCERNS A 12-year-old girl initially presented with progressive scoliosis, who was previously diagnosed with microphthalmia with limb anomalies. However, 4 years after the initial visit, the scoliosis deformity gradually progressed. The patient and family requested the surgical treatment to preserve standing/sitting balance. DIAGNOSES She was diagnosed with microphthalmia with limb anomalies and progressive scoliosis. INTERVENTIONS A posterior corrective fusion surgery (including a pelvic fusion) was performed to prevent future standing/sitting imbalance. OUTCOMES Significant improvement of spinal deformity was observed, with no adverse events. LESSONS This report demonstrated a case of progressive scoliosis associated with microphthalmia with limb anomalies. A posterior corrective spinal fusion was effective to preserve standing/sitting balance. To the best of our knowledge, this is the first report of surgical treatment of progressive scoliosis associated with microphthalmia with limb anomalies.
Collapse
Affiliation(s)
- Yoshiro Yoshikawa
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chikashi Yamakawa
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takanao Shimabukuro
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hideo Kinjo
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shogo Fukase
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiromichi Oshiro
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ryo Katsuki
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
4
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus I, Fromme JC, Liu J. C. elegans SMOC-1 interacts with both BMP and glypican to regulate BMP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523017. [PMID: 36711863 PMCID: PMC9881921 DOI: 10.1101/2023.01.06.523017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secreted modular calcium binding (SMOC) proteins are conserved matricellular proteins found in organisms from C. elegans to humans. SMOC homologs characteristically contain one or two extracellular calcium (EC) binding domain(s) and one or two thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate protein glycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans . We showed that SMOC-1 binds LON-2/glypican, as well as the mature domain of DBL-1/BMP. Moreover, SMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between SMOC-1 and LON-2/glypican is mediated by the EC domain of SMOC-1, while the interaction between SMOC-1 and DBL-1/BMP involves full-length SMOC-1. We further showed that while SMOC-1(EC) is sufficient to promote BMP signaling when overexpressed, both the EC and TY domains are required for SMOC-1 function at the endogenous locus. Finally, when overexpressed, SMOC-1 can promote BMP signaling in the absence of LON-2/glypican. Taken together, our findings led to a model where SMOC-1 functions both negatively in a LON-2-dependent manner and positively in a LON-2-independent manner to regulate BMP signaling. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Timothy Y Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Isabel Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Takahata Y, Hagino H, Kimura A, Urushizaki M, Kobayashi S, Wakamori K, Fujiwara C, Nakamura E, Yu K, Kiyonari H, Bando K, Murakami T, Komori T, Hata K, Nishimura R. Smoc1 and Smoc2 regulate bone formation as downstream molecules of Runx2. Commun Biol 2021; 4:1199. [PMID: 34667264 PMCID: PMC8526618 DOI: 10.1038/s42003-021-02717-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Runx2 is an essential transcription factor for bone formation. Although osteocalcin, osteopontin, and bone sialoprotein are well-known Runx2-regulated bone-specific genes, the skeletal phenotypes of knockout (KO) mice for these genes are marginal compared with those of Runx2 KO mice. These inconsistencies suggest that unknown Runx2-regulated genes play important roles in bone formation. To address this, we attempted to identify the Runx2 targets by performing RNA-sequencing and found Smoc1 and Smoc2 upregulation by Runx2. Smoc1 or Smoc2 knockdown inhibited osteoblastogenesis. Smoc1 KO mice displayed no fibula formation, while Smoc2 KO mice had mild craniofacial phenotypes. Surprisingly, Smoc1 and Smoc2 double KO (DKO) mice manifested no skull, shortened tibiae, and no fibulae. Endochondral bone formation was also impaired at the late stage in the DKO mice. Collectively, these results suggest that Smoc1 and Smoc2 function as novel targets for Runx2, and play important roles in intramembranous and endochondral bone formation. Takahata et al. investigate the functional role of SMOC1/2 proteins in skeletal development. They reveal a genetic pathway that includes Bmp2 and Runx2 inducing expression of the paralogous Smoc genes, which may offer novel and effective therapeutic strategies associated with various bone and cartilage diseases.
Collapse
Affiliation(s)
- Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hiromasa Hagino
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ayaka Kimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuki Urushizaki
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Sachi Kobayashi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kanta Wakamori
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chika Fujiwara
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kayon Yu
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
6
|
Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. Blood 2021; 137:1641-1651. [PMID: 33529332 DOI: 10.1182/blood.2020009405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Secreted modular calcium-binding protein 1 (SMOC1) is an osteonectin/SPARC-related matricellular protein, whose expression is regulated by microRNA-223 (miR-223). Given that platelets are rich in miR-223, this study investigated the expression of SMOC1 and its contribution to platelet function. Human and murine platelets expressed SMOC1, whereas platelets from SMOC1+/- mice did not present detectable mature SMOC1 protein. Platelets from SMOC1+/- mice demonstrated attenuated responsiveness to thrombin (platelet neutrophil aggregate formation, aggregation, clot formation, Ca2+ increase, and β3 integrin phosphorylation), whereas responses to other platelet agonists were unaffected. SMOC1 has been implicated in transforming growth factor-β signaling, but no link to this pathway was detected in platelets. Rather, the SMOC1 Kazal domain directly bound thrombin to potentiate its activity in vitro, as well as its actions on isolated platelets. The latter effects were prevented by monoclonal antibodies against SMOC1. Platelets from miR-223-deficient mice expressed high levels of SMOC1 and exhibited hyperreactivity to thrombin that was also reversed by preincubation with monoclonal antibodies against SMOC1. Similarly, SMOC1 levels were markedly upregulated in platelets from individuals with type 2 diabetes, and the SMOC1 antibody abrogated platelet hyperresponsiveness to thrombin. Taken together, we have identified SMOC1 as a novel thrombin-activating protein that makes a significant contribution to the pathophysiological changes in platelet function associated with type 2 diabetes. Thus, strategies that target SMOC1 or its interaction with thrombin may be attractive therapeutic approaches to normalize platelet function in diabetes.
Collapse
|
7
|
Secreted modular calcium-binding proteins in pathophysiological processes and embryonic development. Chin Med J (Engl) 2020; 132:2476-2484. [PMID: 31613820 PMCID: PMC6831058 DOI: 10.1097/cm9.0000000000000472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Secreted modular calcium-binding proteins (SMOCs) are extracellular glycoproteins of the secreted protein, acidic, and rich in cysteine-related modular calcium-binding protein family and include two isoforms, SMOC1 and SMOC2, in humans. Functionally, SMOCs bind to calcium for various cell functions. In this review, we provided a summary of the most recent advancements in and findings of SMOC1 and SMOC2 in development, homeostasis, and disease states. Data sources: All publications in the PubMed database were searched and retrieved (up to July 24, 2019) using various combinations of keywords searching, including SMOC1, SMOC2, and diseases. Study selection: All original studies and review articles of SMOCs in human diseases and embryo development written in English were retrieved and included. Results: SMOC1 and SMOC2 regulate embryonic development, cell homeostasis, and disease pathophysiology. They play an important role in the regulation of cell cycle progression, cell attachment to the extracellular matrix, tissue fibrosis, calcification, angiogenesis, birth defects, and cancer development. Conclusions: SMOC1 and SMOC2 are critical regulators of many cell biological processes and potential therapeutic targets for the control of human cancers and birth defects.
Collapse
|
8
|
Ophthalmo-acromelic syndrome in an infant. Eur J Med Genet 2019; 62:103664. [PMID: 31067494 DOI: 10.1016/j.ejmg.2019.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/04/2019] [Accepted: 05/04/2019] [Indexed: 11/22/2022]
Abstract
Ophthalmo-acromelic syndrome is a rare autosomal recessive disorder characterized by ocular and skeletal abnormalities. Ocular findings present as a wide spectrum, ranging from mild microphthalmia to true anophthalmia. Short 5th finger, synostosis of 4th and 5th metacarpals, and oligodactyly in feet are frequent limb malformations. Homozygous variants in the SMOC1 gene (SPARC-related modular calcium-binding protein 1 gene) were identified as causative for the syndrome. A 9-month-old female patient is presented herein, who was diagnosed with ophthalmo-acromelic syndrome and had a homozygous nonsense mutation (p.Arg75Ter) in SMOC1, along with a review of the literature.
Collapse
|
9
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|