4
|
Ding Y, Li N, Lou D, Zhang Q, Chang G, Li J, Li X, Li Q, Huang X, Wang J, Jiang F, Wang X. Clinical and genetic analysis in a Chinese cohort of children and adolescents with diabetes/persistent hyperglycemia. J Diabetes Investig 2020; 12:48-62. [PMID: 32531870 PMCID: PMC7779271 DOI: 10.1111/jdi.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Aims/Introduction To investigate the genetic etiology and evaluate the diagnostic application of next‐generation sequencing for diabetes/persistent hyperglycemia in children and adolescents. Materials and Methods Patients with diabetes/persistent hyperglycemia, presenting with at least one other clinical manifestation (other than diabetes) or with a family history of diabetes, were recruited. The clinical and laboratory characteristics of the patients were recorded. Next‐generation sequencing was carried out, and candidate variants were verified by Sanger sequencing. Variant pathogenicity was further evaluated according to the American College of Medical Genetics and Genomics guidelines. Results This study included 101 potential probands, 36 of whom were identified as positive by genetic testing. A further 51.2 and 20.9% of variants were determined to be pathogenic or likely pathogenic, respectively. Variants associated with the disease were primarily identified in 21 genes and three regions of copy number variants. Among the 39 variants in 21 genes, 61.5% (24/39) were novel. The genetic diagnosis of 23 patients was confirmed based on genetic evidence and associated clinical manifestations. We reported GCK variants (21.7%, 5/23) as the most common etiology in our cohort. Different clinical manifestations were observed in one family with WFS1 variants. Conclusions Our findings support the use of next‐generation sequencing as a standard method in patients with diabetes/persistent hyperglycemia and provide insights into the etiologies of these conditions.
Collapse
Affiliation(s)
- Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Lou
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Huang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AE, Amarasekera SSC, Rius R, Formosa LE, Imai-Okazaki A, Francis D, Wang M, Lake NJ, Tregoning S, Jabbari JS, Lucattini A, Nitta KR, Ohtake A, Murayama K, Amor DJ, McGillivray G, Wong FY, van der Knaap MS, Jeroen Vermeulen R, Wiltshire EJ, Fletcher JM, Lewis B, Baynam G, Ellaway C, Balasubramaniam S, Bhattacharya K, Freckmann ML, Arbuckle S, Rodriguez M, Taft RJ, Sadedin S, Cowley MJ, Minoche AE, Calvo SE, Mootha VK, Ryan MT, Okazaki Y, Stroud DA, Simons C, Christodoulou J, Thorburn DR. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. MED 2020; 2:49-73. [PMID: 33575671 DOI: 10.1016/j.medj.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. Methods Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. Findings We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. Conclusions ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. Funding Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.
Collapse
Affiliation(s)
- Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,These authors contributed equally: A.E. Frazier, A.G. Compton
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,These authors contributed equally: A.E. Frazier, A.G. Compton
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - AnneMarie E Welch
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Rocio Rius
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan.,Division of Genomic Medicine Research, Medical Genomics Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Min Wang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nicole J Lake
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Simone Tregoning
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Victorian Comprehensive Cancer Centre, Melbourne VIC 3052, Australia
| | - Alexis Lucattini
- Australian Genome Research Facility Ltd, Victorian Comprehensive Cancer Centre, Melbourne VIC 3052, Australia
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Saitama Medical University Hospital, Saitama, 350-0495, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - David J Amor
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flora Y Wong
- Ritchie Centre, Hudson Institute of Medical Research; Department of Paediatrics, Monash University; and Monash Newborn, Monash Children's Hospital, Melbourne, VIC 3168, Australia
| | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, 6229 HX, Maastricht, The Netherlands
| | - Esko J Wiltshire
- Department of Paediatrics and Child Health, University of Otago Wellington and Capital and Coast District Health Board, Wellington 6021, New Zealand
| | - Janice M Fletcher
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Barry Lewis
- Department of Clinical Biochemistry, PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia and King Edward Memorial Hospital for Women Perth, Subiaco, WA 6008, Australia.,Telethon Kids Institute and School of Paediatrics and Child Health, The University of Western Australia, Perth, WA 6009, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | | | - Susan Arbuckle
- Department of Histopathology, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW 2145, Australia
| | - Michael Rodriguez
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Simon Sadedin
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Kensington, NSW 2750, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - André E Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02446, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02446, USA
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Lead contact
| |
Collapse
|