1
|
Olstad EW, Nordeng HME, Sandve GK, Lyle R, Gervin K. Effects of prenatal exposure to (es)citalopram and maternal depression during pregnancy on DNA methylation and child neurodevelopment. Transl Psychiatry 2023; 13:149. [PMID: 37147306 PMCID: PMC10163054 DOI: 10.1038/s41398-023-02441-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Studies assessing associations between prenatal exposure to antidepressants, maternal depression, and offspring DNA methylation (DNAm) have been inconsistent. Here, we investigated whether prenatal exposure to citalopram or escitalopram ((es)citalopram) and maternal depression is associated with differences in DNAm. Then, we examined if there is an interaction effect of (es)citalopram exposure and DNAm on offspring neurodevelopmental outcomes. Finally, we investigated whether DNAm at birth correlates with neurodevelopmental trajectories in childhood. We analyzed DNAm in cord blood from the Norwegian Mother, Father and Child Cohort Study (MoBa) biobank. MoBa contains questionnaire data on maternal (es)citalopram use and depression during pregnancy and information about child neurodevelopmental outcomes assessed by internationally recognized psychometric tests. In addition, we retrieved ADHD diagnoses from the Norwegian Patient Registry and information on pregnancies from the Medical Birth Registry of Norway. In total, 958 newborn cord blood samples were divided into three groups: (1) prenatal (es)citalopram exposed (n = 306), (2) prenatal maternal depression exposed (n = 308), and (3) propensity score-selected controls (n = 344). Among children exposed to (es)citalopram, there were more ADHD diagnoses and symptoms and delayed communication and psychomotor development. We did not identify differential DNAm associated with (es)citalopram or depression, nor any interaction effects on neurodevelopmental outcomes throughout childhood. Trajectory modeling identified subgroups of children following similar developmental patterns. Some of these subgroups were enriched for children exposed to maternal depression, and some subgroups were associated with differences in DNAm at birth. Interestingly, several of the differentially methylated genes are involved in neuronal processes and development. These results suggest DNAm as a potential predictive molecular marker of later abnormal neurodevelopmental outcomes, but we cannot conclude whether DNAm links prenatal (es)citalopram exposure or maternal depression with child neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway.
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Kjetil Sandve
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Guzik A, Perenc L, Drużbicki M, Podgórska-Bednarz J. Abnormal cranium development in children and adolescents affected by syndromes or diseases associated with neurodysfunction. Sci Rep 2021; 11:2908. [PMID: 33536524 PMCID: PMC7859185 DOI: 10.1038/s41598-021-82511-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Microcephaly and macrocephaly can be considered both cranial growth defects and clinical symptoms. There are two assessment criteria: one applied in dysmorphology and another conventionally used in clinical practice. The determination of which definition or under which paradigm the terminology should be applied can vary on a daily basis and from case to case as necessity dictates, as can defining the relationship between microcephaly or macrocephaly and syndromes or diseases associated with neurodysfunction. Thus, there is a need for standardization of the definition of microcephaly and macrocephaly. This study was designed to investigate associations between abnormal cranial development (head size) and diseases or syndromes linked to neurodysfunction based on essential data collected upon admission of patients to the Neurological Rehabilitation Ward for Children and Adolescents in Poland. The retrospective analysis involved 327 children and adolescents with medical conditions associated with neurodysfunction. Two assessment criteria were applied to identify subgroups of patients with microcephaly, normal head size, and macrocephaly: one system commonly used in clinical practice and another applied in dysmorphology. Based on the results, children and adolescents with syndromes or diseases associated with neurodysfunction present abnormal cranial development (head size), and microcephaly rarely co-occurs with neuromuscular disease. Macrocephaly frequently co-occurs with neural tube defects or neuromuscular diseases and rarely with cerebral palsy (p < 0.05); microcephaly frequently co-occurs with epilepsy and hypothyroidism (p < 0.001). Traditional classification facilitates the identification of a greater number of relationships and is therefore recommended for use in daily practice. There is a need to standardize the definition of microcephaly and macrocephaly and to include them in 'Human Phenotype Ontology' terms.
Collapse
Affiliation(s)
- Agnieszka Guzik
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland.
| | - Lidia Perenc
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Mariusz Drużbicki
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Justyna Podgórska-Bednarz
- Department of Physiotherapy, Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
3
|
Abstract
TLE 1 is the human homologue belonging to a family of four genes and is located on chromosome 9q21. It consists of 19 exons. Although it does not bind directly to DNA, it acts as a repressor of several signalling pathways via transcription factors. TLE1 protein has several physiological roles in embryogenesis, haematopoiesis, general differentiation, and both neuronal and eye development. Much attention was focused on its expression in the tumour cell nuclei of synovial sarcoma (SS). However, several other soft tissue tumours that do and do not share morphological similarity with SS also display nuclear immunoreactivity for TLE1; hence, caution in interpretation is advocated.
Collapse
Affiliation(s)
- Karen Pinto
- Pathology, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Runjan Chetty
- Department of Histopathology, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| |
Collapse
|
4
|
Alexandrescu S, Meredith DM, Lidov HG, Alaggio R, Novello M, Ligon KL, Vargas SO. Loss of histone H3 trimethylation on lysine 27 and nuclear expression of transducin-like enhancer 1 in primary intracranial sarcoma, DICER1-mutant. Histopathology 2020; 78:265-275. [PMID: 32692439 DOI: 10.1111/his.14217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
AIMS Primary intracranial sarcoma, DICER1-mutant is a recently described central nervous system tumour with specific genomic and DNA-methylation profiles. Although some of its histological features (focal spindle-cell morphology, intracytoplasmic eosinophilic granules, and focal heterologous differentiation) are common across most reported cases, the presence of significant histological variability and the lack of differentiation pose diagnostic challenges. We aim to further define the immunoprofile of this tumor. METHODS AND RESULTS We reviewed the clinical history and performed immunohistochemistry for glial fibrillary acidic protein, oligodendrocyte transcription factor 2, SOX2, SOX10, S100, histone H3 trimethylated on lysine 27 (H3K27me3), desmin, myogenin, CD99, epithelial membrane antigen (EMA) and transducin-like enhancer of split 1 (TLE1) on six primary intracranial sarcomas, DICER1-mutant, with appropriate controls. Targeted exome sequencing was performed on all cases. The sarcomas showed diffuse (n = 4), mosaic (n = 1) or minimal (≤5%, n = 1) loss of H3K27 trimethylation and nuclear TLE1 expression (n = 6). Four had immunohistochemical evidence of myogenic differentiation. SOX2, SOX10, S100 and EMA were negative; CD99 expression ranged from focal cytoplasmic (n = 4) to crisp diffuse membranous (n = 2). One tumour had focal cartilaginous differentiation. Similar immunohistochemical findings were observed in a pleuropulmonary blastoma (albeit with focal TLE1 expression), a DICER1-related pineoblastoma, and an embryonal tumour with a multilayered rosette-like DICER1-related cerebellar tumour. Targeted exome sequencing confirmed the presence of pathogenic biallelic DICER1 mutations in all tumours included in this study. CONCLUSION We conclude that H3K27me3 and TLE1 immunostains, when utilised in combination, can be helpful diagnostic markers for primary intracranial sarcoma, DICER1-mutant.
Collapse
Affiliation(s)
| | - David M Meredith
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hart G Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Rita Alaggio
- Department of Pathology, Bambino Gesu Hospital, Rome, Italy
| | | | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Hu S, Chen Z, Gu J, Tan L, Zhang M, Lin W. TLE2 is associated with favorable prognosis and regulates cell growth and gemcitabine sensitivity in pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1017. [PMID: 32953817 PMCID: PMC7475492 DOI: 10.21037/atm-20-5492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The transducin-like enhancer of split (TLE) proteins are a group of transcriptional corepressors. They play a crucial role in cellular homeostasis and are involved in various cancers. Compared with other TLE family members, little is known about the role and the underlying mechanism of TLE2 in human cancers. This study aimed to investigate the role of TLE2 in pancreatic ductal adenocarcinoma (PDAC) using in silico analysis and in vitro experiments. Methods Data were obtained from the Cancer Genome Atlas (TCGA) database to evaluate the prognostic value of TLE2 in PDAC. The MiaPaCa-2 cell line was transfected with siRNA to inhibit endogenous TLE2 expression, and a PANC-1 cell line with stable TLE2 overexpression was constructed using lentiviral transfection, which were confirmed by real-time polymerase chain reaction and western blotting. MTT assay, transwell invasion assays, and flow cytometry were carried out to assess cell viability, invasion, and apoptosis, respectively. TLE2 expression in PDAC cells was altered to evaluate their sensitivity to gemcitabine. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict the biological role of TLE2. Results High expression of TLEs was significantly associated with increased overall survival (OS) and disease-free survival (DFS) in patients with PDAC. Among the PDAC cell lines, TLE2 expression was lowest and highest in PANC-1 cells and MiaPaCa-2 cells, respectively. TLE2 overexpression impaired the proliferation ability of PANC-1 cells and downregulation of TLE2 promoted the proliferation of MiaPaCa-2 cells. Upregulation of TLE2 in PANC-1 cells induced S-phase accumulation and sensitivity to gemcitabine. In contrast, the downregulation of TLE2 in MiaPaCa-2 cells promoted resistance to gemcitabine. Moreover, bioinformatics analysis also revealed the potential tumor suppressor role of TLE2 and uncovered a close relationship between TLE2 expression and cell cycle regulation. Conclusions Our results suggest that TLE2 expression is correlated with prognosis in patients with PDAC and show that TLE2 plays a central role in the regulation of cell proliferation, the cell cycle, and gemcitabine sensitivity. This study provides new insights and evidence that TLE2 functions as a tumor suppressor gene and prognostic marker in PDAC.
Collapse
Affiliation(s)
- Shixiong Hu
- The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhengbo Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinling Gu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liyang Tan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meifeng Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Lin
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
6
|
Wang Y, Yuan D, Zhou L, Liang Z, Zhou W, Lu J, Jiang B, You L, Guo J, Zhao YP. Transducin-Like Enhancer of Split-1 Inhibits Malignant Behaviors in vitro and Predicts a Better Prognosis in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:576. [PMID: 32432037 PMCID: PMC7214815 DOI: 10.3389/fonc.2020.00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Transducin-like enhancer of split-1 (TLE1), a member of the Groucho/TLE family of transcriptional corepressors, has been reported to be involved in the tumorigenesis of various cancers and function as a clinical prognostic indicator. However, the mechanisms and prognostic significance of TLE1 in pancreatic ductal adenocarcinoma (PDAC) have not been elucidated. Methods: In this study, western blot analyses and real-time polymerase chain reaction (RT-PCR) were employed to evaluate the expression of TLE1 and related proteins in PDAC cell lines. Wound healing, transwell migration and invasion, and Cell Counting Kit-8 (CCK-8) assays were used to determine cell line-specific differences in metastasis and proliferation. Flow cytometry was performed for cell cycle detection. RNA sequencing and bioinformatics were undertaken to explore the molecular mechanisms and potential targeted molecules of TLE1. TLE1 expression in tumor and para-tumor tissues was evaluated by tissue microarray-based immunohistochemistry using a semiquantitative method (H-score) in 262 patients with radical PDAC resection. Correlation, Kaplan-Meier survival, univariate, and multivariate analyses were also performed. Results: Our findings showed that TLE1 expression was common in PDAC cell lines. Upregulation of TLE1 inhibited PDAC cell migration, invasion, and proliferation in vitro by delaying the G0/G1 transition. Immunohistochemistry revealed that TLE1 was specifically expressed in the nucleus and at higher levels in tumor tissues compared with para-tumor tissues. Generally, high TLE1 expression was associated with no vascular invasion. In univariate analyses, high TLE1 expression was associated with longer disease-specific survival (DSS) in all patients and in 16 patient subgroups. In multivariate analyses, TLE1 expression was independently associated with DSS in all patients and four patient subgroups. Conclusion: In conclusion, these results suggest that TLE1 has an inhibitory role in PDAC progression and is a favorable prognostic indicator for patients with resectable PDAC.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Da Yuan
- Medical Management Office, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci 2019; 13:352. [PMID: 31417368 PMCID: PMC6685065 DOI: 10.3389/fncel.2019.00352] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the human cerebral cortex is a complex and dynamic process, in which neural stem cell proliferation, neuronal migration, and post-migratory neuronal organization need to occur in a well-organized fashion. Alterations at any of these crucial stages can result in malformations of cortical development (MCDs), a group of genetically heterogeneous neurodevelopmental disorders that present with developmental delay, intellectual disability and epilepsy. Recent progress in genetic technologies, such as next generation sequencing, most often focusing on all protein-coding exons (e.g., whole exome sequencing), allowed the discovery of more than a 100 genes associated with various types of MCDs. Although this has considerably increased the diagnostic yield, most MCD cases remain unexplained. As Whole Exome Sequencing investigates only a minor part of the human genome (1-2%), it is likely that patients, in which no disease-causing mutation has been identified, could harbor mutations in genomic regions beyond the exome. Even though functional annotation of non-coding regions is still lagging behind that of protein-coding genes, tremendous progress has been made in the field of gene regulation. One group of non-coding regulatory regions are enhancers, which can be distantly located upstream or downstream of genes and which can mediate temporal and tissue-specific transcriptional control via long-distance interactions with promoter regions. Although some examples exist in literature that link alterations of enhancers to genetic disorders, a widespread appreciation of the putative roles of these sequences in MCDs is still lacking. Here, we summarize the current state of knowledge on cis-regulatory regions and discuss novel technologies such as massively-parallel reporter assay systems, CRISPR-Cas9-based screens and computational approaches that help to further elucidate the emerging role of the non-coding genome in disease. Moreover, we discuss existing literature on mutations or copy number alterations of regulatory regions involved in brain development. We foresee that the future implementation of the knowledge obtained through ongoing gene regulation studies will benefit patients and will provide an explanation to part of the missing heritability of MCDs and other genetic disorders.
Collapse
Affiliation(s)
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC – University Medical Center, Rotterdam, Netherlands
| |
Collapse
|