1
|
Li G, Huang Y, Han W, Wei L, Huang H, Zhu Y, Xiao Q, Wang Z, Huang W, Duan R. Eg5 UFMylation promotes spindle organization during mitosis. Cell Death Dis 2024; 15:544. [PMID: 39085203 PMCID: PMC11291904 DOI: 10.1038/s41419-024-06934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
UFMylation is a highly conserved ubiquitin-like post-translational modification that catalyzes the covalent linkage of UFM1 to its target proteins. This modification plays a critical role in the maintenance of endoplasmic reticulum proteostasis, DNA damage response, autophagy, and transcriptional regulation. Mutations in UFM1, as well as in its specific E1 enzyme UBA5 and E2 enzyme UFC1, have been genetically linked to microcephaly. Our previous research unveiled the important role of UFMylation in regulating mitosis. However, the underlying mechanisms have remained unclear due to the limited identification of substrates. In this study, we identified Eg5, a motor protein crucial for mitotic spindle assembly and maintenance, as a novel substrate for UFMylation and identified Lys564 as the crucial UFMylation site. UFMylation did not alter its transcriptional level, phosphorylation level, or protein stability, but affected the mono-ubiquitination of Eg5. During mitosis, Eg5 and UFM1 co-localize at the centrosome and spindle apparatus, and defective UFMylation leads to diminished spindle localization of Eg5. Notably, the UFMylation-defective Eg5 mutant (K564R) exhibited shorter spindles, metaphase arrest, spindle checkpoint activation, and a failure of cell division in HeLa cells. Overall, Eg5 UFMylation is essential for proper spindle organization, mitotic progression, and cell proliferation.
Collapse
Affiliation(s)
- Guangxu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yuanjiang Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wenbo Han
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Liyi Wei
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Hongjing Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yingbao Zhu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Qiao Xiao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Zujia Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wen Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ranhui Duan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
2
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
4
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife 2023; 12:RP89891. [PMID: 38079206 PMCID: PMC10712953 DOI: 10.7554/elife.89891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Albert N Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Michael W Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for ChildrenBostonUnited States
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science UniversityPortlandUnited States
| | - Ruth J Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
- VA Portland Health Care SystemPortlandUnited States
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science UniversityPortlandUnited States
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
5
|
Serrano RJ, Oorschot V, Palipana D, Calcinotto V, Sonntag C, Ramm G, Bryson-Richardson RJ. Genetic model of UBA5 deficiency highlights the involvement of both peripheral and central nervous systems and identifies widespread mitochondrial abnormalities. Brain Commun 2023; 5:fcad317. [PMID: 38046095 PMCID: PMC10691876 DOI: 10.1093/braincomms/fcad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/10/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
Variants in UBA5 have been reported to cause neurological disease with impaired motor function, developmental delay, intellectual disability and brain pathology as recurrent clinical manifestations. UBA5 encodes a ubiquitin-activating-like enzyme that activates ufmylation, a post-translational ubiquitin-like modification pathway, which has been implicated in neurodevelopment and neuronal survival. The reason behind the variation in severity and clinical manifestations in affected individuals and the signal transduction pathways regulated by ufmylation that compromise the nervous system remains unknown. Zebrafish have emerged as a powerful model to study neurodegenerative disease due to its amenability for in vivo analysis of muscle and neuronal tissues, high-throughput examination of motor function and rapid embryonic development allowing an examination of disease progression. Using clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing, we developed and characterized zebrafish mutant models to investigate disease pathophysiology. uba5 mutant zebrafish showed a significantly impaired motor function accompanied by delayed growth and reduced lifespan, reproducing key phenotypes observed in affected individuals. Our study demonstrates the suitability of zebrafish to study the pathophysiology of UBA5-related disease and as a powerful tool to identify pathways that could reduce disease progression. Furthermore, uba5 mutants exhibited widespread mitochondrial damage in both the nervous system and the skeletal muscle, suggesting that a perturbation of mitochondrial function may contribute to disease pathology.
Collapse
Affiliation(s)
- Rita J Serrano
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne 3800, Australia
| | - Dashika Palipana
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Vanessa Calcinotto
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Carmen Sonntag
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | | |
Collapse
|
6
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292782. [PMID: 37502976 PMCID: PMC10371176 DOI: 10.1101/2023.07.17.23292782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Albert N. Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael W. Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lauren C. Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A. Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruth J. Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care System, Portland, OR 97239, USA
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Ivanov I, Pacheva I, Yordanova R, Sotkova I, Galabova F, Gaberova K, Panova M, Gheneva I, Tsvetanova T, Noneva K, Dimitrova D, Markov S, Sapundzhiev N, Bichev S, Savov A. Hypomyelination with Atrophy of Basal Ganglia and Cerebellum (HABC) Due to UFM1 Mutation in Roma Patients - Severe Early Encephalopathy with Stridor and Severe Hearing and Visual Impairment. A Single Center Experience. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:207-214. [PMID: 35189806 DOI: 10.2174/1871527321666220221100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease with neurodevelopmental delay, motor, and speech regression, pronounced extrapyramidal syndrome, and sensory deficits due to TUBB4A mutation. In 2017, a severe variant was described in 16 Roma infants due to mutation in UFM1. OBJECTIVE The objective of this study is to expand the clinical manifestations of H-ABC due to UFM1 mutation and suggest clues for clinical diagnosis. METHODOLOGY Retrospective analysis of all 9 cases with H-ABC due to c.-273_-271delTCA mutation in UFM1 treated during 2013-2020 in a Neuropediatric Ward in Plovdiv, Bulgaria. RESULTS Presentation is no later than 2 months with inspiratory stridor, impaired sucking, swallowing, vision and hearing, and reduced active movements. By the age of 10 months, a monomorphic disease was observed: microcephaly (6/9), malnutrition (5/9), muscle hypertonia (9/9) and axial hypotonia (4/9), progressing to opisthotonus (6/9), dystonic posturing (5/9), nystagmoid ocular movements (6/9), epileptic seizures (4/9), non-epileptic spells (3/9). Dysphagia (7/9), inspiratory stridor (9/9), dyspnea (5/9), bradypnea (5/9), apnea (2/9) were major signs. Vision and hearing were never achieved or lost by 4-8 mo. Neurodevelopment was absent or minimal with subsequent regression after 2-5 mo. Brain imaging revealed cortical atrophy (7/9), atrophic ventricular dilatation (4/9), macrocisterna magna (5/9), reduced myelination (6/6), corpus callosum atrophy (3/6) and abnormal putamen and caput nuclei caudati. The age at death was between 8 and 18 mo. CONCLUSION Roma patients with severe encephalopathy in early infancy with stridor, opisthotonus, bradypnea, severe hearing and visual impairment should be tested for the Roma founder mutation of H-ABC in UFM1.
Collapse
Affiliation(s)
- Ivan Ivanov
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ralitsa Yordanova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Iglika Sotkova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Fani Galabova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
| | - Katerina Gaberova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Margarita Panova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ina Gheneva
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Tsvetanova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Katerina Noneva
- Department of Pediatrics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| | - Diana Dimitrova
- Department of Radiology, Saint George University Hospital, Plovdiv, Bulgaria
| | - Stoyan Markov
- ENT Clinic, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Otorhinolaryngology Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Nikolay Sapundzhiev
- Department of Otorhinolaryngology, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| | - Stoyan Bichev
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria
| | - Alexey Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria
| |
Collapse
|
8
|
Zhang J, Zhu H, Liu S, Quintero M, Zhu T, Xu R, Cai Y, Han Y, Li H. Deficiency of Murine UFM1-Specific E3 Ligase Causes Microcephaly and Inflammation. Mol Neurobiol 2022; 59:6363-6372. [PMID: 35931931 DOI: 10.1007/s12035-022-02979-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
The UFM1 conjugation system is a Ubiquitin (Ub)-like modification system that is essential for animal development and normal physiology of multiple tissues and organs. It consists of UFM1, a Ub-like modifier, and the UFM1-specific enzymes (namely E1 enzyme UBA5, E2 enzyme UFC1 E2, and E3 ligases) that catalyze conjugation of UFM1 to its specific protein targets. Clinical studies have identified rare genetic variants in human UFM1, UBA5 and UFC1 genes that were linked to early-onset encephalopathy and defective brain development, strongly suggesting the critical role of the UFM1 system in the nervous system. Yet, the physiological function of this system in adult brain remains not defined. In this study, we investigated the role of UFM1 E3 ligase in adult mouse and found that both UFL1 and UFBP1 proteins, two components of UFM1 E3 ligase, are essential for survival of mature neurons in adult mouse. Neuron-specific deletion of either UFL1 or UFBP1 led to significant neuronal loss and elevation of inflammatory response. Interestingly, loss of one allele of UFBP1 genes caused the occurrence of seizure-like events. Our study has provided genetic evidence for the indispensable role of UFM1 E3 ligase in mature neurons and further demonstrated the importance of the UFM1 system in the nervous system.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang , Jiangxi, China
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Tianyi Zhu
- Greenbrier High School, Evans, GA, 30809, USA
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Al-Saady ML, Kaiser CS, Wakasuqui F, Korenke GC, Waisfisz Q, Polstra A, Pouwels PJW, Bugiani M, van der Knaap MS, Lunsing RJ, Liebau E, Wolf NI. Homozygous UBA5 Variant Leads to Hypomyelination with Thalamic Involvement and Axonal Neuropathy. Neuropediatrics 2021; 52:489-494. [PMID: 33853163 DOI: 10.1055/s-0041-1724130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The enzyme ubiquitin-like modifier activating enzyme 5 (UBA5) plays an important role in activating ubiquitin-fold modifier 1 (UFM1) and its associated cascade. UFM1 is widely expressed and known to facilitate the post-translational modification of proteins. Variants in UBA5 and UFM1 are involved in neurodevelopmental disorders with early-onset epileptic encephalopathy as a frequently seen disease manifestation. Using whole exome sequencing, we detected a homozygous UBA5 variant (c.895C > T p. [Pro299Ser]) in a patient with severe global developmental delay and epilepsy, the latter from the age of 4 years. Magnetic resonance imaging showed hypomyelination with atrophy and T2 hyperintensity of the thalamus. Histology of the sural nerve showed axonal neuropathy with decreased myelin. Functional analyses confirmed the effect of the Pro299Ser variant on UBA5 protein function, showing 58% residual protein activity. Our findings indicate that the epilepsy currently associated with UBA5 variants may present later in life than previously thought, and that radiological signs include hypomyelination and thalamic involvement. The data also reinforce recently reported associations between UBA5 variants and peripheral neuropathy.
Collapse
Affiliation(s)
- Murtadha L Al-Saady
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte S Kaiser
- Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Felipe Wakasuqui
- Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, VU University Medical Center Amsterdam, The Netherlands
| | - Abeltje Polstra
- Department of Clinical Genetics, Amsterdam UMC, VU University Medical Center Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, VU University Medical Center and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Roelineke J Lunsing
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva Liebau
- Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Briere LC, Walker MA, High FA, Cooper C, Rogers CA, Callahan CJ, Ishimura R, Ichimura Y, Caruso PA, Sharma N, Brokamp E, Koziura ME, Mohammad SS, Dale RC, Riley LG, Phillips JA, Komatsu M, Sweetser DA. A description of novel variants and review of phenotypic spectrum in UBA5-related early epileptic encephalopathy. Cold Spring Harb Mol Case Stud 2021; 7:a005827. [PMID: 33811063 PMCID: PMC8208045 DOI: 10.1101/mcs.a005827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Early infantile epileptic encephalopathy-44 (EIEE44, MIM: 617132) is a previously described condition resulting from biallelic variants in UBA5, a gene involved in a ubiquitin-like post-translational modification system called UFMylation. Here we report five children from four families with biallelic pathogenic variants in UBA5 All five children presented with global developmental delay, epilepsy, axial hypotonia, appendicular hypertonia, and a movement disorder, including dystonia in four. Affected individuals in all four families have compound heterozygous pathogenic variants in UBA5 All have the recurrent mild c.1111G > A (p.Ala371Thr) variant in trans with a second UBA5 variant. One patient has the previously described c.562C > T (p. Arg188*) variant, two other unrelated patients have a novel missense variant, c.907T > C (p.Cys303Arg), and the two siblings have a novel missense variant, c.761T > C (p.Leu254Pro). Functional analyses demonstrate that both the p.Cys303Arg variant and the p.Leu254Pro variants result in a significant decrease in protein function. We also review the phenotypes and genotypes of all 15 previously reported families with biallelic UBA5 variants, of which two families have presented with distinct phenotypes, and we describe evidence for some limited genotype-phenotype correlation. The overlap of motor and developmental phenotypes noted in our cohort and literature review adds to the increasing understanding of genetic syndromes with movement disorders-epilepsy.
Collapse
Affiliation(s)
- Lauren C Briere
- Department of Pediatrics, Division of Medical Genetics and Metabolism, and Center for Genomic Medicine, Massachusetts 02114, USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts 02114, USA
| | - Frances A High
- Department of Pediatrics, Division of Medical Genetics and Metabolism, Massachusetts 02114, USA
| | - Cynthia Cooper
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Cassandra A Rogers
- Department of Pediatrics, Division of Medical Genetics and Metabolism, and Center for Genomic Medicine, Massachusetts 02114, USA
| | - Christine J Callahan
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Ryosuke Ishimura
- Department of Biochemistry, Niigata University School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshinobu Ichimura
- Department of Biochemistry, Niigata University School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Elly Brokamp
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Mary E Koziura
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Shekeeb S Mohammad
- Kids Neuroscience Center & Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Russell C Dale
- Kids Neuroscience Center & Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
- Department of Physiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - David A Sweetser
- Department of Pediatrics, Division of Medical Genetics and Metabolism, and Center for Genomic Medicine, Massachusetts 02114, USA
| |
Collapse
|
11
|
Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, Xu L, Wang K, Guan D, Liang Q, Mao J, Zhou J, Zhang Q, Wu X, Wang M, Cong YS, Liu J. Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics 2021; 48:403-410. [PMID: 34148841 DOI: 10.1016/j.jgg.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The UFMylation modification is a novel ubiquitin-like conjugation system, consisting of UBA5 (E1), UFC1 (E2), UFL1 (E3), and the conjugating molecule UFM1. Deficiency in this modification leads to embryonic lethality in mice and diseases in humans. However, the function of UFL1 is poorly characterized. Studies on Ufl1 conditional knockout mice have demonstrated that the deletion of Ufl1 in cardiomyocytes and in intestinal epithelial cells causes heart failure and increases susceptibility to experimentally induced colitis, respectively, suggesting an essential role of UFL1 in the maintenance of the homeostasis in these organs. Yet, its physiological function in other tissues and organs remains completely unknown. In this study, we generate the nephron tubules specific Ufl1 knockout mice and find that the absence of Ufl1 in renal tubular results in kidney atrophy and interstitial fibrosis. In addition, Ufl1 deficiency causes the activation of unfolded protein response and cell apoptosis, which may be responsible for the kidney atrophy and interstitial fibrosis. Collectively, our results have demonstrated the crucial role of UFL1 in regulating kidney function and maintenance of endoplasmic reticulum homeostasis, providing another layer of understanding kidney atrophy.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xifu Ye
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Chenlu Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Jiabao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Zeyuan Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Juzhen Yan
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Ke Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Di Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| |
Collapse
|
12
|
Witting KF, Mulder MP. Highly Specialized Ubiquitin-Like Modifications: Shedding Light into the UFM1 Enigma. Biomolecules 2021; 11:biom11020255. [PMID: 33578803 PMCID: PMC7916544 DOI: 10.3390/biom11020255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.
Collapse
|
13
|
Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, Zweier M, Oneda B, Socher E, Crowther LM, Wohlrab G, Gogoll L, Poms M, Seiler M, Papik M, Baldinger R, Baumer A, Asadollahi R, Kroell-Seger J, Schmid R, Iff T, Schmitt-Mechelke T, Otten K, Hackenberg A, Addor MC, Klein A, Azzarello-Burri S, Sticht H, Joset P, Plecko B, Rauch A. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet 2018; 27:408-421. [PMID: 30552426 PMCID: PMC6460568 DOI: 10.1038/s41431-018-0299-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in ∼42% of cases with causative copy number variants in 6 patients (∼10%) and causative sequence variants in 16 established disease genes in 20 patients (∼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.
Collapse
Affiliation(s)
- Sorina M Papuc
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland.,Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Lucia Abela
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Thomas L Simmons
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Bernhard Schmitt
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Eileen Socher
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Lisa M Crowther
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Gabriele Wohlrab
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Martin Poms
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michelle Seiler
- Pediatric Emergency Department, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Rosa Baldinger
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Judith Kroell-Seger
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, Zurich, 8000, Switzerland
| | - Regula Schmid
- Division of Child Neurology, Kantonsspital Winterthur, Winterthur, 8401, Switzerland
| | - Tobias Iff
- Municipal Hospital of Zurich Triemli, Zurich, 8063, Switzerland
| | | | - Karoline Otten
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, Zurich, 8000, Switzerland
| | - Annette Hackenberg
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Marie-Claude Addor
- Department of Woman-Mother-Child, University Medical Center CHUV, Lausanne, 1015, Switzerland
| | - Andrea Klein
- Division of Paediatric Neurology, University Childerns Hospital Basel, UKBB, 4031, Basel, Switzerland.,Division of Paediatric Neurology, Development and Rehabilitation, University Children's Hospital, 3010, Bern, Switzerland
| | - Silvia Azzarello-Burri
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland.,Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland. .,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, 8057, Switzerland.
| |
Collapse
|