1
|
Kafida M, Karela M, Giakountis A. RNA-Independent Regulatory Functions of lncRNA in Complex Disease. Cancers (Basel) 2024; 16:2728. [PMID: 39123456 PMCID: PMC11311644 DOI: 10.3390/cancers16152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
During the metagenomics era, high-throughput sequencing efforts both in mice and humans indicate that non-coding RNAs (ncRNAs) constitute a significant fraction of the transcribed genome. During the past decades, the regulatory role of these non-coding transcripts along with their interactions with other molecules have been extensively characterized. However, the study of long non-coding RNAs (lncRNAs), an ncRNA regulatory class with transcript lengths that exceed 200 nucleotides, revealed that certain non-coding transcripts are transcriptional "by-products", while their loci exert their downstream regulatory functions through RNA-independent mechanisms. Such mechanisms include, but are not limited to, chromatin interactions and complex promoter-enhancer competition schemes that involve the underlying ncRNA locus with or without its nascent transcription, mediating significant or even exclusive roles in the regulation of downstream target genes in mammals. Interestingly, such RNA-independent mechanisms often drive pathological manifestations, including oncogenesis. In this review, we summarize selective examples of lncRNAs that regulate target genes independently of their produced transcripts.
Collapse
Affiliation(s)
| | | | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Vazana-Netzarim R, Elmalem Y, Sofer S, Bruck H, Danino N, Sarig U. Distinct HAND2/HAND2-AS1 Expression Levels May Fine-Tune Mesenchymal and Epithelial Cell Plasticity of Human Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:16546. [PMID: 38003736 PMCID: PMC10672054 DOI: 10.3390/ijms242216546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
We previously developed several successful decellularization strategies that yielded porcine cardiac extracellular matrices (pcECMs) exhibiting tissue-specific bioactivity and bioinductive capacity when cultured with various pluripotent and multipotent stem cells. Here, we study the tissue-specific effects of the pcECM on seeded human mesenchymal stem cell (hMSC) phenotypes using reverse transcribed quantitative polymerase chain reaction (RT-qPCR) arrays for cardiovascular related gene expression. We further corroborated interesting findings at the protein level (flow cytometry and immunological stains) as well as bioinformatically using several mRNA sequencing and protein databases of normal and pathologic adult and embryonic (organogenesis stage) tissue expression. We discovered that upon the seeding of hMSCs on the pcECM, they displayed a partial mesenchymal-to-epithelial transition (MET) toward endothelial phenotypes (CD31+) and morphologies, which were preceded by an early spike (~Day 3 onward after seeding) in HAND2 expression at both the mRNA and protein levels compared to that in plate controls. The CRISPR-Cas9 knockout (KO) of HAND2 and its associated antisense long non-coding RNA (HAND2-AS1) regulatory region resulted in proliferation arrest, hypertrophy, and senescent-like morphology. Bioinformatic analyses revealed that HAND2 and HAND2-AS1 are highly correlated in expression and are expressed in many different tissue types albeit at distinct yet tightly regulated expression levels. Deviation (downregulation or upregulation) from these basal tissue expression levels is associated with a long list of pathologies. We thus suggest that HAND2 expression levels may possibly fine-tune hMSCs' plasticity through affecting senescence and mesenchymal-to-epithelial transition states, through yet unknown mechanisms. Targeting this pathway may open up a promising new therapeutic approach for a wide range of diseases, including cancer, degenerative disorders, and aging. Nevertheless, further investigation is required to validate these findings and better understand the molecular players involved, potential inducers and inhibitors of this pathway, and eventually potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel Vazana-Netzarim
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Yishay Elmalem
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Shachar Sofer
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Hod Bruck
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Naama Danino
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Udi Sarig
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| |
Collapse
|
3
|
Progressive evolution of secondary aquatic adaptation in hippos and cetaceans. Cell Discov 2022; 8:134. [PMID: 36539412 PMCID: PMC9768135 DOI: 10.1038/s41421-022-00483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022] Open
|
4
|
Yeung MW, Wang S, van de Vegte YJ, Borisov O, van Setten J, Snieder H, Verweij N, Said MA, van der Harst P. Twenty-Five Novel Loci for Carotid Intima-Media Thickness: A Genome-Wide Association Study in >45 000 Individuals and Meta-Analysis of >100 000 Individuals. Arterioscler Thromb Vasc Biol 2022; 42:484-501. [PMID: 34852643 PMCID: PMC8939707 DOI: 10.1161/atvbaha.121.317007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Carotid artery intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. Twenty susceptibility loci for cIMT were previously identified and the identification of additional susceptibility loci furthers our knowledge on the genetic architecture underlying atherosclerosis. APPROACH AND RESULTS We performed 3 genome-wide association studies in 45 185 participants from the UK Biobank study who underwent cIMT measurements and had data on minimum, mean, and maximum thickness. We replicated 15 known loci and identified 20 novel loci associated with cIMT at P<5×10-8. Seven novel loci (ZNF385D, ADAMTS9, EDNRA, HAND2, MYOCD, ITCH/EDEM2/MMP24, and MRTFA) were identified in all 3 phenotypes. An additional new locus (LOXL1) was identified in the meta-analysis of the 3 phenotypes. Sex interaction analysis revealed sex differences in 7 loci including a novel locus (SYNE3) in males. Meta-analysis of UK Biobank data with a previous meta-analysis led to identification of three novel loci (APOB, FIP1L1, and LOXL4). Transcriptome-wide association analyses implicated additional genes ARHGAP42, NDRG4, and KANK2. Gene set analysis showed an enrichment in extracellular organization and the PDGF (platelet-derived growth factor) signaling pathway. We found positive genetic correlations of cIMT with coronary artery disease rg=0.21 (P=1.4×10-7), peripheral artery disease rg=0.45 (P=5.3×10-5), and systolic blood pressure rg=0.30 (P=4.0×10-18). A negative genetic correlation between average of maximum cIMT and high-density lipoprotein was found rg=-0.12 (P=7.0×10-4). CONCLUSIONS Genome-wide association meta-analyses in >100 000 individuals identified 25 novel loci associated with cIMT providing insights into genes and tissue-specific regulatory mechanisms of proatherosclerotic processes. We found evidence for shared biological mechanisms with cardiovascular diseases.
Collapse
Affiliation(s)
- Ming Wai Yeung
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Siqi Wang
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| | - Yordi J. van de Vegte
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Germany (O.B.)
| | - Jessica van Setten
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - M. Abdullah Said
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| |
Collapse
|
5
|
Giri P, Mukhopadhyay A, Gupta M, Mohapatra B. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 2021; 27:431-454. [PMID: 34245424 DOI: 10.1007/s10741-021-10125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype-genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.
Collapse
Affiliation(s)
- Prerna Giri
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Amrita Mukhopadhyay
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Mohini Gupta
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India.
| |
Collapse
|
6
|
Singh R, Cohen ASA, Poulton C, Hjortshøj TD, Akahira-Azuma M, Mendiratta G, Khan WA, Azmanov DN, Woodward KJ, Kirchhoff M, Shi L, Edelmann L, Baynam G, Scott SA, Jabs EW. Deletion of ERF and CIC causes abnormal skull morphology and global developmental delay. Cold Spring Harb Mol Case Stud 2021; 7:a005991. [PMID: 34117072 PMCID: PMC8208047 DOI: 10.1101/mcs.a005991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
The ETS2 repressor factor (ERF) is a transcription factor in the RAS-MEK-ERK signal transduction cascade that regulates cell proliferation and differentiation, and pathogenic sequence variants in the ERF gene cause variable craniosynostosis inherited in an autosomal dominant pattern. The reported ERF variants are largely loss-of-function, implying haploinsufficiency as a primary disease mechanism; however, ERF gene deletions have not been reported previously. Here we describe three probands with macrocephaly, craniofacial dysmorphology, and global developmental delay. Clinical genetic testing for fragile X and other relevant sequencing panels were negative; however, chromosomal microarray identified heterozygous deletions (63.7-583.2 kb) on Chromosome 19q13.2 in each proband that together included five genes associated with Mendelian diseases (ATP1A3, ERF, CIC, MEGF8, and LIPE). Parental testing indicated that the aberrations were apparently de novo in two of the probands and were inherited in the one proband with the smallest deletion. Deletion of ERF is consistent with the reported loss-of-function ERF variants, prompting clinical copy-number-variant classifications of likely pathogenic. Moreover, the recent characterization of heterozygous loss-of-function CIC sequence variants as a cause of intellectual disability and neurodevelopmental disorders inherited in an autosomal dominant pattern is also consistent with the developmental delays and intellectual disabilities identified among the two probands with CIC deletions. Taken together, this case series adds to the previously reported patients with ERF and/or CIC sequence variants and supports haploinsufficiency of both genes as a mechanism for a variable syndromic cranial phenotype with developmental delays and intellectual disability inherited in an autosomal dominant pattern.
Collapse
Affiliation(s)
- Ram Singh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Ana S A Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Cathryn Poulton
- Genetic Service of Western Australia, King Edward Memorial Hospital, Perth, Western Australia 6008, Australia
| | - Tina Duelund Hjortshøj
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Moe Akahira-Azuma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Geetu Mendiratta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Wahab A Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Dimitar N Azmanov
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Pathology and Laboratory Medicine, Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Karen J Woodward
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Pathology and Laboratory Medicine, Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Maria Kirchhoff
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisong Shi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Western Australia 6008, Australia
- Faculty of Health and Medical Sciences, Division of Paediatrics and Telethon Kids Institute, University of Western Australia, Perth, Western Australia 6008, Australia
- Faculty of Medicine, University of Notre Dame, Australia, Perth, Western Australia 6160, Australia
| | - Stuart A Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Sema4, Stamford, Connecticut 06902, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
7
|
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH, Yang YQ. SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet 2021; 64:104211. [PMID: 33794346 DOI: 10.1016/j.ejmg.2021.104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
As the most prevalent form of human birth defect, congenital heart disease (CHD) contributes to substantial morbidity, mortality and socioeconomic burden worldwide. Aggregating evidence has convincingly demonstrated that genetic defects exert a pivotal role in the pathogenesis of CHD, and causative mutations in multiple genes have been causally linked to CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic components underpinning CHD in the overwhelming majority of patients remain obscure. In this research, a four-generation consanguineous family suffering from CHD transmitted in an autosomal dominant mode was recruited. By whole-exome sequencing and bioinformatics analyses as well as Sanger sequencing analyses of the family members, a new heterozygous SOX17 variation, NM_022454.4: c.553G > T; p.(Glu185*), was identified to co-segregate with CHD in the family, with complete penetrance. The nonsense variation was neither detected in 310 unrelated healthy volunteers used as controls nor retrieved in such population genetics databases as the Exome Aggregation Consortium database, Genome Aggregation Database, and the Single Nucleotide Polymorphism database. Functional assays by utilizing a dual-luciferase reporter assay system unveiled that the Glu185*-mutant SOX17 protein had no transcriptional activity on its two target genes NOTCH1 and GATA4, which have been reported to cause CHD. Furthermore, the mutation abrogated the synergistic transactivation between SOX17 and NKX2.5, another established CHD-causing transcription factor. These findings firstly indicate SOX17 loss-of-function mutation predisposes to familial CHD, which adds novel insight to the molecular mechanism of CHD, implying potential implications for genetic risk appraisal and individualized prophylaxis of the family members affected with CHD.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, 264003, Shandong Province, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Hua TR, Zhang SY. Cardiomyopathies in China: A 2018-2019 state-of-the-art review. Chronic Dis Transl Med 2020; 6:224-238. [PMID: 33336168 PMCID: PMC7729112 DOI: 10.1016/j.cdtm.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 11/02/2022] Open
Abstract
Cardiomyopathies are diseases of the cardiac muscle and are often characterized by ventricular dilation, hypertrophy, and cardiac arrhythmia. Patients with cardiomyopathies often experience sudden death and cardiac failure and require cardiac transplantation during the course of disease progression. Early diagnosis, differential diagnosis, and genetic consultation depend on imaging techniques, genetic testing, and new emerging diagnostic tools such as serum biomarkers. The molecular genetics of cardiomyopathies has been widely studied recently. The discovery of mechanisms underlying heterogeneity and overlapping of the phenotypes of cardiomyopathies has revealed the existence of disease modifiers, and this has led to the emergence of novel disease-modifying therapy. This 2018-2019 state-of-the-art review outlines the pathogenesis, diagnosis, and treatment of cardiomyopathies in China.
Collapse
Affiliation(s)
- Tian-Rui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Qiao Q, Zhao CM, Yang CX, Gu JN, Guo YH, Zhang M, Li RG, Qiu XB, Xu YJ, Yang YQ. Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy. Clin Chem Lab Med 2020; 59:955-963. [PMID: 33554560 DOI: 10.1515/cclm-2020-1318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
10
|
Ihara K, Sasano T, Hiraoka Y, Togo-Ohno M, Soejima Y, Sawabe M, Tsuchiya M, Ogawa H, Furukawa T, Kuroyanagi H. A missense mutation in the RSRSP stretch of Rbm20 causes dilated cardiomyopathy and atrial fibrillation in mice. Sci Rep 2020; 10:17894. [PMID: 33110103 PMCID: PMC7591520 DOI: 10.1038/s41598-020-74800-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a fatal heart disease characterized by left ventricular dilatation and cardiac dysfunction. Recent genetic studies on DCM have identified causative mutations in over 60 genes, including RBM20, which encodes a regulator of heart-specific splicing. DCM patients with RBM20 mutations have been reported to present with more severe cardiac phenotypes, including impaired cardiac function, atrial fibrillation (AF), and ventricular arrhythmias leading to sudden cardiac death, compared to those with mutations in the other genes. An RSRSP stretch of RBM20, a hotspot of missense mutations found in patients with idiopathic DCM, functions as a crucial part of its nuclear localization signals. However, the relationship between mutations in the RSRSP stretch and cardiac phenotypes has never been assessed in an animal model. Here, we show that Rbm20 mutant mice harboring a missense mutation S637A in the RSRSP stretch, mimicking that in a DCM patient, demonstrated severe cardiac dysfunction and spontaneous AF and ventricular arrhythmias mimicking the clinical state in patients. In contrast, Rbm20 mutant mice with frame-shifting deletion demonstrated less severe phenotypes, although loss of RBM20-dependent alternative splicing was indistinguishable. RBM20S637A protein cannot be localized to the nuclear speckles, but accumulated in cytoplasmic, perinuclear granule-like structures in cardiomyocytes, which might contribute to the more severe cardiac phenotypes.
Collapse
Affiliation(s)
- Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan. .,Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Marina Togo-Ohno
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yurie Soejima
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
11
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Di RM, Yang CX, Zhao CM, Yuan F, Qiao Q, Gu JN, Li XM, Xu YJ, Yang YQ. Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy. Eur J Med Genet 2020; 63:103827. [DOI: 10.1016/j.ejmg.2019.103827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
|
13
|
Cohen ASA, Simotas C, Webb BD, Shi H, Khan WA, Edelmann L, Scott SA, Singh R. Haploinsufficiency of the basic helix-loop-helix transcription factor HAND2 causes congenital heart defects. Am J Med Genet A 2020; 182:1263-1267. [PMID: 32134193 DOI: 10.1002/ajmg.a.61537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are caused by a disruption in heart morphogenesis, which is dependent, in part, on a network of transcription factors (TFs) that regulate myocardial development. Heterozygous sequence variants in the basic helix-loop-helix TF gene heart and neural crest derivatives expressed 2 (HAND2) have been reported among some patients with CHDs; however, HAND2 has not yet been established as a Mendelian disease gene. We report a 31-month-old male with unicommissural unicuspid aortic valve, moderate aortic stenosis, and mild pulmonic stenosis. Chromosome analysis revealed a normal 46,XY karyotype, and a CHD sequencing panel was negative for pathogenic variants in NKX2.5, GATA4, TBX5, and CHD7. However, chromosomal microarray (CMA) testing identified a heterozygous 546.0-kb deletion on chromosome 4q34.1 (174364195_174910239[GRCh37/hg19]) that included exons 1 and 2 of SCRG1, HAND2, and HAND2-AS1. Familial CMA testing determined that the deletion was paternally inherited, which supported a likely pathogenic classification as the proband's father had previously undergone surgery for Tetralogy of Fallot. The family history was also notable for a paternal uncle who had previously died from complications related to an unknown heart defect. Taken together, this first report of a HAND2 and HAND2-AS1 deletion in a family with CHDs strongly supports haploinsufficiency of HAND2 as an autosomal dominant cause of CHD.
Collapse
Affiliation(s)
- Ana S A Cohen
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Bryn D Webb
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Wahab A Khan
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Edelmann
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stuart A Scott
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ram Singh
- Sema4, Stamford, Connecticut, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Almomani R, Herkert JC, Posafalvi A, Post JG, Boven LG, van der Zwaag PA, Willems PHGM, van Veen-Hof IH, Verhagen JMA, Wessels MW, Nikkels PGJ, Wintjes LT, van den Berg MP, Sinke RJ, Rodenburg RJ, Niezen-Koning KE, van Tintelen JP, Jongbloed JDH. Homozygous damaging SOD2 variant causes lethal neonatal dilated cardiomyopathy. J Med Genet 2019; 57:23-30. [PMID: 31494578 DOI: 10.1136/jmedgenet-2019-106330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2 -·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2 -· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.
Collapse
Affiliation(s)
- Rowida Almomani
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Posafalvi
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan G Post
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ludolf G Boven
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid H van Veen-Hof
- Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Liesbeth T Wintjes
- Department of Paediatrics, Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard J Sinke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard J Rodenburg
- Department of Paediatrics, Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klary E Niezen-Koning
- Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
16
|
Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:257-267. [DOI: 10.1007/s12265-018-9851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|