1
|
Tanaka Y, Morozumi A, Hirokawa N. Nodal flow transfers polycystin to determine mouse left-right asymmetry. Dev Cell 2023; 58:1447-1461.e6. [PMID: 37413993 DOI: 10.1016/j.devcel.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Left-dominant [Ca2+]i elevation on the left margin of the ventral node furnishes the initial laterality of mouse embryos. It depends on extracellular leftward fluid flow (nodal flow), fibroblast growth factor receptor (FGFR)/sonic hedgehog (Shh) signaling, and the PKD1L1 polycystin subunit, of which interrelationship is still elusive. Here, we show that leftward nodal flow directs PKD1L1-containing fibrous strands and facilitates Nodal-mediated [Ca2+]i elevation on the left margin. We generate KikGR-PKD1L1 knockin mice in order to monitor protein dynamics with a photoconvertible fluorescence protein tag. By imaging those embryos, we have identified fragile meshwork being gradually transferred leftward involving pleiomorphic extracellular events. A portion of the meshwork finally bridges over the left nodal crown cells in an FGFR/Shh-dependent manner. As PKD1L1 N-term is predominantly associated with Nodal on the left margin and that PKD1L1/PKD2 overexpression significantly augments cellular Nodal sensitivity, we propose that leftward transfer of polycystin-containing fibrous strands determines left-right asymmetry in developing embryos.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ai Morozumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
2
|
McDermott H, Sherlaw-Sturrock C, Baptista J, Hartles-Spencer L, Naik S. Rapid exome sequencing in critically ill children impacts acute and long-term management of patients and their families: A retrospective regional evaluation. Eur J Med Genet 2022; 65:104571. [PMID: 35842091 DOI: 10.1016/j.ejmg.2022.104571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/12/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Genetic disorders are a significant cause of paediatric morbidity and mortality. Rapid exome sequencing was introduced by the National Health Service (NHS) in England on 1st October 2019 for acutely unwell children with a likely monogenic disorder, or to inform current pregnancy management where there was a previously affected child or fetus. We present results of a 12-month patient cohort from one large clinical genetics centre in England. METHODS Patients were identified through local genetics laboratory records. We included all cases which underwent rapid exome sequencing between 1st October 2020 and 30th September 2021. DNA was extracted, quality checked and exported to the Exeter Genomic laboratory where library preparation, exome sequencing of all known human genes, gene-agnostic bioinformatic analysis, variant interpretation, MDT discussions and reporting were performed. RESULTS Ninety-five probands were included. Trio analysis was performed in 90% (85), duo in 8% (8), singleton in 2% (2). The median turnaround time for preliminary reports was 11 days. The overall diagnostic yield was 40% (38 patients); 36% (34 patients) made solely on exome with a further 4% on concomitant exome and microarray analysis. Highest diagnostic rates were seen in patients with neuro-regression, skeletal dysplasia, neuromuscular and neurometabolic conditions. Where the diagnosis was made solely through exome sequencing, management was altered for the proband or family in 97% (33/34). For the proband, this was most commonly that the diagnosis was able to inform current management and prognosis (20 patients, 59%), as well as direct specialist referrals (10 patients, 29%). For families, the exome sequencing results provided accurate recurrence risk counselling in 88% (30/34) with cascade testing offered if indicated in some families. CONCLUSIONS In the majority of cases, the genetic diagnoses influenced acute and long-term management for critically ill children and their families. Paediatric and neonatal clinicians in the NHS now have direct access to exome sequencing for their patients. The rapid turnaround time was particularly helpful to alter the management in acute clinical settings and is a powerful tool for diagnosing monogenic conditions. This study is an example of a highly successful integration of a national rapid exome sequencing service with diagnostic rates comparable to previously reported literature.
Collapse
Affiliation(s)
- Helen McDermott
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Charlotte Sherlaw-Sturrock
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, UK; Peninsula Medical School, Faculty of Health, University of Plymouth, UK
| | | | - Swati Naik
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
3
|
A novel nonsense PKD1L1 variant cause heterotaxy syndrome with congenital asplenia in a Han Chinese patient. J Hum Genet 2022; 67:573-577. [PMID: 35691949 DOI: 10.1038/s10038-022-01053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Heterotaxy syndrome is a very rare congenital disease, which is caused by the disorder of left-right asymmetry during visceral development. However, pathogenic genetic lesions are found in less than 20% of HS patients. In this cohort study, whole-exome sequencing was performed for 110 patients with situs inversus or situs ambiguous. We identified a novel nonsense variant in PKD1L1(c.1387 C > T; p.463Gln*) in a Chinese patient with heterotaxy syndrome and congenital asplenia. This homozygous variant caused the domain of PKD1L1 complete absence. To our knowledge, this novel variant is the first phenotype of congenital asplenia found in patients with PKD1L1 variants, and the first PKD1L1 variant found in China. Our findings expand the spectrum of PKD1L1 variants and provide support for PKD1L1 variant and congenital asplenia, and the critical role of PKD1L1 during left-right patterning in the Han Chinese population.
Collapse
|
4
|
Sherlaw-Sturrock C, Austin T, Baptista J, Gilmour K, Naik S. Dysmorphism and immunodeficiency - One of the differential diagnoses is PAX1 related otofaciocervical syndrome type 2. Eur J Med Genet 2022; 65:104523. [PMID: 35595062 DOI: 10.1016/j.ejmg.2022.104523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Otofaciocervical syndrome (OTFCS) is a rare condition associated with short stature, abnormal facial features and conductive hearing loss. OTFCS type 2 (OTFCS) is an autosomal recessive form of this condition with associated T cell deficiency due to biallelic variants in PAX1. We report a female child born to a consanguineous couple with homozygous PAX1 variant. She was diagnosed with T cell immunodeficiency as a neonate and underwent haematopoietic stem cell transplant with cord blood at the age of 5 months. She had facial dysmorphism including ear abnormalities and spinal deformity. We present longitudinal follow-up of the proband who has responded well to the bone marrow transplant to add to the otherwise limited description of this rare condition. This case report expands on the limited literature available on this condition, with only five families reported to date and it further highlights the clinical utility of a rapid gene-agnostic trio exome analysis in identifying a genetic diagnosis in patients who previously underwent genomic testing by gene panel analysis.
Collapse
Affiliation(s)
| | - Thomas Austin
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital, UK
| | - Julia Baptista
- Faculty of Health, University of Plymouth, UK; Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kimberly Gilmour
- Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, UK
| | - Swati Naik
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital, UK
| |
Collapse
|
5
|
Coolen M, Altin N, Rajamani K, Pereira E, Siquier-Pernet K, Puig Lombardi E, Moreno N, Barcia G, Yvert M, Laquerrière A, Pouliet A, Nitschké P, Boddaert N, Rausell A, Razavi F, Afenjar A, Billette de Villemeur T, Al-Maawali A, Al-Thihli K, Baptista J, Beleza-Meireles A, Garel C, Legendre M, Gelot A, Burglen L, Moutton S, Cantagrel V. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 2022; 109:909-927. [PMID: 35390279 DOI: 10.1016/j.ajhg.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.
Collapse
Affiliation(s)
- Marion Coolen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| | - Nami Altin
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karthyayani Rajamani
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Eva Pereira
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karine Siquier-Pernet
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Emilia Puig Lombardi
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nadjeda Moreno
- HDBR Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giulia Barcia
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Marianne Yvert
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France
| | - Aurore Pouliet
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Patrick Nitschké
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1299, Institut Imagine, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Antonio Rausell
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory and Molecular Genetics Service, Service de Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Féréchté Razavi
- Unité d'Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, Paris 75015, France
| | - Alexandra Afenjar
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Thierry Billette de Villemeur
- Sorbonne Université, Service de Neuropédiatrie - Pathologie du Développement, Centre de Référence Déficiences Intellectuelles de Causes Rares et Polyhandicap, Hôpital Trousseau AP-HP, Paris 75012, France
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BT, UK
| | - Ana Beleza-Meireles
- Clinical Genetics Department, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | - Catherine Garel
- Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, AP-HP, Paris 75012, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU Bordeaux, Pellegrin Hospital, Bordeaux 33300, France
| | - Antoinette Gelot
- Neuropathology, Department of Pathology, Trousseau Hospital, AP-HP, Paris 75012, France; INMED, Aix-Marseille University, INSERM UMR 1249, Marseille 13009, France
| | - Lydie Burglen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Sébastien Moutton
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Vincent Cantagrel
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| |
Collapse
|
6
|
Breuer K, Riedhammer KM, Müller N, Schaidinger B, Dombrowsky G, Dittrich S, Zeidler S, Bauer UMM, Westphal DS, Meitinger T, Dakal TC, Hitz MP, Breuer J, Reutter H, Hilger AC, Hoefele J. Exome sequencing in individuals with cardiovascular laterality defects identifies potential candidate genes. Eur J Hum Genet 2022; 30:946-954. [PMID: 35474353 PMCID: PMC9349204 DOI: 10.1038/s41431-022-01100-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/26/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The birth prevalence of laterality defects is about 1.1/10,000 comprising different phenotypes ranging from situs inversus totalis to heterotaxy, mostly associated with complex congenital heart defects (CHD) and situs abnormalities such as intestinal malrotation, biliary atresia, asplenia, or polysplenia. A proportion of laterality defects arise in the context of primary ciliary dyskinesia (PCD) accompanied by respiratory symptoms or infertility. In this study, exome sequencing (ES) was performed in 14 case-parent trios/quattros with clinical exclusion of PCD prior to analysis. Moreover, all cases and parents underwent detailed clinical phenotyping including physical examination, echocardiography by a skilled paediatric cardiologist and abdominal ultrasound examinations not to miss mildly affected individuals. Subsequent survey of the exome data comprised filtering for monoallelic de novo, rare biallelic, and X-linked recessive variants. In two families, rare variants of uncertain significance (VUS) in PKD1L1 and ZIC3 were identified. Both genes have been associated with laterality defects. In two of the remaining families, biallelic variants in LMBRD1 and DNAH17, respectively, were prioritized. In another family, an ultra-rare de novo variant in WDR47 was found. Extensive exome survey of 2,109 single exomes of individuals with situs inversus totalis, heterotaxy, or isolated CHD identified two individuals with novel monoallelic variants in WDR47, but no further individuals with biallelic variants in DNAH17 or LMBRD1. Overall, ES of 14 case-parent trios/quattros with cardiovascular laterality defects identified rare VUS in two families in known disease-associated genes PKD1L1 and ZIC3 and suggests DNAH17, LMBRD1, and WDR47 as potential genes involved in laterality defects.
Collapse
Affiliation(s)
- Katinka Breuer
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Department of Pediatric Cardiology, Pediatric Heart Center, University Hospital of Bonn, Bonn, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicole Müller
- Department of Pediatric Cardiology, Pediatric Heart Center, University Hospital of Bonn, Bonn, Germany
| | - Birthe Schaidinger
- Department of Pediatric Cardiology, Pediatric Heart Center, University Hospital of Bonn, Bonn, Germany
| | - Gregor Dombrowsky
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Sven Dittrich
- Department of Pediatric Cardiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Zeidler
- Pediatric Department, Asklepios clinics, Sankt Augustin, Germany
| | - Ulrike M M Bauer
- Competence Network for Congenital Heart Defects & National Register for Congenital Heart Defects, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Berlin, Germany.,Department of Internal Medicine I, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University Udaipur, Udaipur, Rajasthan, India
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Kiel, Germany
| | - Johannes Breuer
- Department of Pediatric Cardiology, Pediatric Heart Center, University Hospital of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Alina C Hilger
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Abhinav P, Zhang GF, Zhao CM, Xu YJ, Wang J, Yang YQ. A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Exp Ther Med 2022; 23:311. [PMID: 35369534 PMCID: PMC8943534 DOI: 10.3892/etm.2022.11240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Gao-Feng Zhang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
8
|
Kocaaga A, Yimenicioglu S, Alıcı CA. Case report: a de-novo 7p12.3 microduplication detected in an infant with perineal hamartoma and imperforate anus. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Anorectal malformations (ARM) represent a wide spectrum of defects. Caudal and genitourinary malformations can associate with anorectal malformations. Genetic factors may play role in the development of anorectal malformations. Perineal masses like sacrococcygeal teratoma, rectal prolapse, or duplication cysts were reported before, but their association with perineal hamartoma and anal atresia is extremely rare.
Case presentation
Here, we report an 11-month-old female infant. She had 551 kb duplication at 7p12.3 with perineal hamartoma and anal atresia consisting a cystic lesion with a diameter of 4 mm at the filum terminale (L2 vertebra) on lumbar magnetic resonance imaging (MRI) in neonatal period. She presented with hypotonia. She had anorectal anomaly and external perineal mass bulging from left major labium extending across anal region with imperforate anus. There was 1 × 1 cm polyp-like protrusion on it. She was operated in neonatal period. Genetic laboratory investigations showed karyotype 46, XX. The microduplication of the chromosome 7p12.3 was detected by microarray analysis. There were not any significant homozygous or heterozygous variants determined by whole-exome sequencing.
Conclusions
To the best of our knowledge, this is the first report of a patient with a microduplication of the chromosome 7p12.3, and second case with perineal hamartoma and imperforate anus. Clinicians should pay attention to microdeletions and microduplications while giving genetic counseling to patients with urogenital and anorectal abnormalities.
Collapse
|
9
|
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH, Yang YQ. SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet 2021; 64:104211. [PMID: 33794346 DOI: 10.1016/j.ejmg.2021.104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
As the most prevalent form of human birth defect, congenital heart disease (CHD) contributes to substantial morbidity, mortality and socioeconomic burden worldwide. Aggregating evidence has convincingly demonstrated that genetic defects exert a pivotal role in the pathogenesis of CHD, and causative mutations in multiple genes have been causally linked to CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic components underpinning CHD in the overwhelming majority of patients remain obscure. In this research, a four-generation consanguineous family suffering from CHD transmitted in an autosomal dominant mode was recruited. By whole-exome sequencing and bioinformatics analyses as well as Sanger sequencing analyses of the family members, a new heterozygous SOX17 variation, NM_022454.4: c.553G > T; p.(Glu185*), was identified to co-segregate with CHD in the family, with complete penetrance. The nonsense variation was neither detected in 310 unrelated healthy volunteers used as controls nor retrieved in such population genetics databases as the Exome Aggregation Consortium database, Genome Aggregation Database, and the Single Nucleotide Polymorphism database. Functional assays by utilizing a dual-luciferase reporter assay system unveiled that the Glu185*-mutant SOX17 protein had no transcriptional activity on its two target genes NOTCH1 and GATA4, which have been reported to cause CHD. Furthermore, the mutation abrogated the synergistic transactivation between SOX17 and NKX2.5, another established CHD-causing transcription factor. These findings firstly indicate SOX17 loss-of-function mutation predisposes to familial CHD, which adds novel insight to the molecular mechanism of CHD, implying potential implications for genetic risk appraisal and individualized prophylaxis of the family members affected with CHD.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, 264003, Shandong Province, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|