1
|
Faulkner IE, Pajak RZ, Harte MK, Glazier JD, Hager R. Voltage-gated potassium channels as a potential therapeutic target for the treatment of neurological and psychiatric disorders. Front Cell Neurosci 2024; 18:1449151. [PMID: 39411003 PMCID: PMC11473391 DOI: 10.3389/fncel.2024.1449151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Voltage-gated potassium channels are a widely distributed subgroup of potassium channels responsible for the efflux of potassium in the repolarisation of the cell membrane, and hence contribute to the latency and propagation of action potentials. As they are causal to synaptic transmission, alterations to the structure of these channels can lead to a variety of neurological and psychiatric diseases. The Kv3 subfamily of voltage-gated potassium channels are found on many neurons in the brain, including inhibitory interneurons where they contribute to fast-frequency firing. Changes to the firing ability of these interneurons can lead to an imbalance of inhibitory and excitatory neurotransmission. To date, we have little understanding of the mechanism by which excitatory and inhibitory inputs become imbalanced. This imbalance is associated with cognitive deficits seen across neurological and neuropsychiatric disorders, which are currently difficult to treat. In this review, we collate evidence supporting the hypothesis that voltage-gated potassium channels, specifically the Kv3 subfamily, are central to many neurological and psychiatric disorders, and may thus be considered as an effective drug target. The collective evidence provided by the studies reviewed here demonstrates that Kv3 channels may be amenable to novel treatments that modulate the activity of these channels, with the prospect of improved patient outcome.
Collapse
Affiliation(s)
- Isabel E. Faulkner
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachael Z. Pajak
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael K. Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Zhang X, Theotokis PI, Li N, Wright CF, Samocha KE, Whiffin N, Ware JS. Genetic constraint at single amino acid resolution in protein domains improves missense variant prioritisation and gene discovery. Genome Med 2024; 16:88. [PMID: 38992748 PMCID: PMC11238507 DOI: 10.1186/s13073-024-01358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND One of the major hurdles in clinical genetics is interpreting the clinical consequences associated with germline missense variants in humans. Recent significant advances have leveraged natural variation observed in large-scale human populations to uncover genes or genomic regions that show a depletion of natural variation, indicative of selection pressure. We refer to this as "genetic constraint". Although existing genetic constraint metrics have been demonstrated to be successful in prioritising genes or genomic regions associated with diseases, their spatial resolution is limited in distinguishing pathogenic variants from benign variants within genes. METHODS We aim to identify missense variants that are significantly depleted in the general human population. Given the size of currently available human populations with exome or genome sequencing data, it is not possible to directly detect depletion of individual missense variants, since the average expected number of observations of a variant at most positions is less than one. We instead focus on protein domains, grouping homologous variants with similar functional impacts to examine the depletion of natural variations within these comparable sets. To accomplish this, we develop the Homologous Missense Constraint (HMC) score. We utilise the Genome Aggregation Database (gnomAD) 125 K exome sequencing data and evaluate genetic constraint at quasi amino-acid resolution by combining signals across protein homologues. RESULTS We identify one million possible missense variants under strong negative selection within protein domains. Though our approach annotates only protein domains, it nonetheless allows us to assess 22% of the exome confidently. It precisely distinguishes pathogenic variants from benign variants for both early-onset and adult-onset disorders. It outperforms existing constraint metrics and pathogenicity meta-predictors in prioritising de novo mutations from probands with developmental disorders (DD). It is also methodologically independent of these, adding power to predict variant pathogenicity when used in combination. We demonstrate utility for gene discovery by identifying seven genes newly significantly associated with DD that could act through an altered-function mechanism. CONCLUSIONS Grouping variants of comparable functional impacts is effective in evaluating their genetic constraint. HMC is a novel and accurate predictor of missense consequence for improved variant interpretation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- National Heart & Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Present address: European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Pantazis I Theotokis
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Nicholas Li
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Whiffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - James S Ware
- National Heart & Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Vinci M, Vitello GA, Greco D, Treccarichi S, Ragalmuto A, Musumeci A, Fallea A, Federico C, Calì F, Saccone S, Elia M. Next Generation Sequencing and Electromyography Reveal the Involvement of the P2RX6 Gene in Myopathy. Curr Issues Mol Biol 2024; 46:1150-1163. [PMID: 38392191 PMCID: PMC10887510 DOI: 10.3390/cimb46020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Ion channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction. Electromyography (EMG) analysis performed on a patient who complained of weakness and fatigue revealed the presence of primary muscular damage, suggesting an early-stage myopathy. Whole exome sequencing (WES) did not detect potentially causative variants in known myopathy-associated genes but revealed a novel homozygous deletion of the P2RX6 gene likely disrupting protein function. The P2RX6 gene, predominantly expressed in skeletal muscle, is an ATP-gated ion channel receptor belonging to the purinergic receptors (P2RX) family. In addition, STRING pathways suggested a correlation with more proteins having a plausible role in myopathy. No previous studies have reported the implication of this gene in myopathy. Further studies are needed on patients with a defective ion channel pathway, and the use of in vitro functional assays in suppressing P2RX6 gene expression will be required to validate its functional role.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | |
Collapse
|
4
|
Vetri L, Calì F, Saccone S, Vinci M, Chiavetta NV, Carotenuto M, Roccella M, Costanza C, Elia M. Whole Exome Sequencing as a First-Line Molecular Genetic Test in Developmental and Epileptic Encephalopathies. Int J Mol Sci 2024; 25:1146. [PMID: 38256219 PMCID: PMC10816140 DOI: 10.3390/ijms25021146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are severe neurodevelopmental disorders characterized by recurrent, usually early-onset, epileptic seizures accompanied by developmental impairment often related to both underlying genetic etiology and abnormal epileptiform activity. Today, next-generation sequencing technologies (NGS) allow us to sequence large portions of DNA quickly and with low costs. The aim of this study is to evaluate the use of whole-exome sequencing (WES) as a first-line molecular genetic test in a sample of subjects with DEEs characterized by early-onset drug-resistant epilepsies, associated with global developmental delay and/or intellectual disability (ID). We performed 82 WESs, identifying 35 pathogenic variants with a detection rate of 43%. The identified variants were highlighted on 29 different genes including, 3 new candidate genes (KCNC2, STXBP6, DHRS9) for DEEs never identified before. In total, 23 out of 35 (66%) de novo variants were identified. The most frequently identified type of inheritance was autosomal dominant de novo (60%) followed by autosomal recessive in homozygosity (17%) and heterozygosity (11%), autosomal dominant inherited from parental mosaicism (6%) and X-linked dominant de novo (6%). The most frequent mutations identified were missense (75%) followed by frameshift deletions (16%), frameshift duplications (5%), and splicing mutations (3%). Considering the results obtained in the present study we support the use of WES as a form of first-line molecular genetic testing in DEEs.
Collapse
Affiliation(s)
- Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | | | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (M.R.); (C.C.)
| | - Carola Costanza
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (M.R.); (C.C.)
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| |
Collapse
|
5
|
Clatot J, Currin CB, Liang Q, Pipatpolkai T, Massey SL, Helbig I, Delemotte L, Vogels TP, Covarrubias M, Goldberg EM. A structurally precise mechanism links an epilepsy-associated KCNC2 potassium channel mutation to interneuron dysfunction. Proc Natl Acad Sci U S A 2024; 121:e2307776121. [PMID: 38194456 PMCID: PMC10801864 DOI: 10.1073/pnas.2307776121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024] Open
Abstract
De novo heterozygous variants in KCNC2 encoding the voltage-gated potassium (K+) channel subunit Kv3.2 are a recently described cause of developmental and epileptic encephalopathy (DEE). A de novo variant in KCNC2 c.374G > A (p.Cys125Tyr) was identified via exome sequencing in a patient with DEE. Relative to wild-type Kv3.2, Kv3.2-p.Cys125Tyr induces K+ currents exhibiting a large hyperpolarizing shift in the voltage dependence of activation, accelerated activation, and delayed deactivation consistent with a relative stabilization of the open conformation, along with increased current density. Leveraging the cryogenic electron microscopy (cryo-EM) structure of Kv3.1, molecular dynamic simulations suggest that a strong π-π stacking interaction between the variant Tyr125 and Tyr156 in the α-6 helix of the T1 domain promotes a relative stabilization of the open conformation of the channel, which underlies the observed gain of function. A multicompartment computational model of a Kv3-expressing parvalbumin-positive cerebral cortex fast-spiking γ-aminobutyric acidergic (GABAergic) interneuron (PV-IN) demonstrates how the Kv3.2-Cys125Tyr variant impairs neuronal excitability and dysregulates inhibition in cerebral cortex circuits to explain the resulting epilepsy.
Collapse
Affiliation(s)
- Jerome Clatot
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
| | | | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Tanadet Pipatpolkai
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, SolnaSE-171 21, Sweden
| | - Shavonne L. Massey
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
- The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Ingo Helbig
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
- The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, SolnaSE-171 21, Sweden
| | - Tim P. Vogels
- The Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Ethan M. Goldberg
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia,PA19104
- The Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- The Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| |
Collapse
|
6
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
7
|
Vinci M, Costanza C, Galati Rando R, Treccarichi S, Saccone S, Carotenuto M, Roccella M, Calì F, Elia M, Vetri L. STXBP6 Gene Mutation: A New Form of SNAREopathy Leads to Developmental Epileptic Encephalopathy. Int J Mol Sci 2023; 24:16436. [PMID: 38003627 PMCID: PMC10670990 DOI: 10.3390/ijms242216436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Syntaxin-binding protein 6 (STXBP6), also known as amysin, is an essential component of the SNAP receptor (SNARE) complex and plays a crucial role in neuronal vesicle trafficking. Mutations in genes encoding SNARE proteins are often associated with a broad spectrum of neurological conditions defined as "SNAREopathies", including epilepsy, intellectual disability, and neurodevelopmental disorders such as autism spectrum disorders. The present whole exome sequencing (WES) study describes, for the first time, the occurrence of developmental epileptic encephalopathy and autism spectrum disorders as a result of a de novo deletion within the STXBP6 gene. The truncated protein in the STXBP6 gene leading to a premature stop codon could negatively modulate the synaptic vesicles' exocytosis. Our research aimed to elucidate a plausible, robust correlation between STXBP6 gene deletion and the manifestation of developmental epileptic encephalopathy.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Carola Costanza
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (C.C.); (M.R.)
| | - Rosanna Galati Rando
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (C.C.); (M.R.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| |
Collapse
|
8
|
Ruggiero SM, Xian J, Helbig I. The current landscape of epilepsy genetics: where are we, and where are we going? Curr Opin Neurol 2023; 36:86-94. [PMID: 36762645 PMCID: PMC10088099 DOI: 10.1097/wco.0000000000001141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW In this review, we aim to analyse the progress in understanding the genetic basis of the epilepsies, as well as ongoing efforts to define the increasingly diverse and novel presentations, phenotypes and divergences from the expected that have continually characterized the field. RECENT FINDINGS A genetic workup is now considered to be standard of care for individuals with an unexplained epilepsy, due to mounting evidence that genetic diagnoses significantly influence treatment choices, prognostication, community support, and increasingly, access to clinical trials. As more individuals with epilepsy are tested, novel presentations of known epilepsy genes are being discovered, and more individuals with self-limited epilepsy are able to attain genetic diagnoses. In addition, new genes causative of epilepsy are being uncovered through both traditional and novel methods, including large international data-sharing collaborations and massive sequencing efforts as well as computational methods and analyses driven by the Human Phenotype Ontology (HPO). SUMMARY New approaches to gene discovery and characterization are advancing rapidly our understanding of the genetic and phenotypic architecture of the epilepsies. This review highlights relevant and groundbreaking studies published recently that have pushed forward the field of epilepsy genetics.
Collapse
Affiliation(s)
- Sarah M Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Blockade of Kv1.3 Potassium Channel Inhibits Microglia-Mediated Neuroinflammation in Epilepsy. Int J Mol Sci 2022; 23:ijms232314693. [PMID: 36499018 PMCID: PMC9740890 DOI: 10.3390/ijms232314693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epilepsy is a chronic neurological disorder whose pathophysiology relates to inflammation. The potassium channel Kv1.3 in microglia has been reported as a promising therapeutic target in neurological diseases in which neuroinflammation is involved, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and middle cerebral artery occlusion/reperfusion (MCAO/R). Currently, little is known about the relationship between Kv1.3 and epilepsy. In this study, we found that Kv1.3 was upregulated in microglia in the KA-induced mouse epilepsy model. Importantly, blocking Kv1.3 with its specific small-molecule blocker 5-(4-phenoxybutoxy)psoralen (PAP-1) reduced seizure severity, prolonged seizure latency, and decreased neuronal loss. Mechanistically, we further confirmed that blockade of Kv1.3 suppressed proinflammatory microglial activation and reduced proinflammatory cytokine production by inhibiting the Ca2+/NF-κB signaling pathway. These results shed light on the critical function of microglial Kv1.3 in epilepsy and provided a potential therapeutic target.
Collapse
|
10
|
Mukherjee S, Cassini TA, Hu N, Yang T, Li B, Shen W, Moth CW, Rinker DC, Sheehan JH, Cogan JD, Newman JH, Hamid R, Macdonald RL, Roden DM, Meiler J, Kuenze G, Phillips JA, Capra JA. Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants. HGG ADVANCES 2022; 3:100131. [PMID: 36035247 PMCID: PMC9399384 DOI: 10.1016/j.xhgg.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.
Collapse
Affiliation(s)
- Souhrid Mukherjee
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Thomas A. Cassini
- Department of Internal Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20814, USA
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Yang
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bian Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher W. Moth
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - David C. Rinker
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan H. Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joy D. Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Undiagnosed Diseases Network
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Internal Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20814, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
- Department of Chemistry, Leipzig University, Leipzig, SAC 04109, Germany
- Department of Computer Science, Leipzig University, Leipzig, SAC 04109, Germany
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John H. Newman
- Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert L. Macdonald
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dan M. Roden
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
- Department of Chemistry, Leipzig University, Leipzig, SAC 04109, Germany
- Department of Computer Science, Leipzig University, Leipzig, SAC 04109, Germany
| | - Georg Kuenze
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - John A. Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Li L, Liu Z, Yang H, Li Y, Zeng Q, Chen L, Liu Y, Chen Y, Zhu F, Cao D, Hu J, Shen X. Investigation of novel de novo KCNC2 variants causing severe developmental and early-onset epileptic encephalopathy. Seizure 2022; 101:218-224. [PMID: 36087422 DOI: 10.1016/j.seizure.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022] Open
Abstract
Purpose The voltage-gated potassium channel Kv3.2, encoded by KCNC2, facilitates fast-spiking GABAergic interneurons to fire action potentials at high frequencies. It is pivotal to maintaining excitation/inhibition balance in mammalian brains. This study identified two novel de novo KCNC2 variants, p.Pro470Ser (P470S) and p.Phe382Leu (F382L), in patients with early onset developmental and epileptic encephalopathy (DEE). Methods To examine the molecular basis of DEE, we studied the functional characteristics of variant channels using patch-clamp techniques and computational modeling. Results Whole-cell patch clamp recordings from infected HEK293 cells revealed that channel activation and deactivation kinetics strongly decreased in both Kv3.2 P470S and F382L variant channels. This decrease also occurred in Kv3.2 p.Val471Leu (V471L) channels, known to be associated with DEE. In addition, Kv3.2 F382L and V471L variants exhibited a significant increase in channel conductance and a ∼20 mV negative shift in the threshold for voltage-dependent activation. Simulations of model GABAergic interneurons revealed that all variants decreased neuronal firing frequency. Thus, the variants' net loss-of-function effects disinhibited neural networks. Conclusion Our findings provide compelling evidence supporting the role of KCNC2 as a disease-causing gene in human neurodevelopmental delay and epilepsy.
Collapse
Affiliation(s)
- Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zili Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Haiyang Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, CAS, Beijing 100101, China
| | - Qi Zeng
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yidi Liu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yan Chen
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Fengjun Zhu
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Dezhi Cao
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China; Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Jun Hu
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Xuefeng Shen
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Wang S, Yu Y, Wang X, Deng X, Ma J, Liu Z, Gu W, Sun D. Emerging evidence of genotype–phenotype associations of developmental and epileptic encephalopathy due to KCNC2 mutation: Identification of novel R405G. Front Mol Neurosci 2022; 15:950255. [PMID: 36090251 PMCID: PMC9453199 DOI: 10.3389/fnmol.2022.950255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) have high genetic heterogeneity, and DEE due to the potassium voltage-gated channel subfamily C member 2 (KCNC2) variant remains poorly understood, given the scarcity of related case studies. We report on two unrelated Chinese patients, an 11-year-old boy and a 5-year-old girl, diagnosed with global developmental delay (GDD), intellectual disability (ID), and focal impaired awareness seizure characterized by generalized spike and wave complexes on electroencephalogram (EEG) in the absence of significant brain lesions. Whole-exome sequencing (WES) and electrophysiological analysis were performed to detect genetic variants and evaluate functional changes of the mutant KCNC2, respectively. Importantly, we identified a novel gain-of-function KCNC2 variant, R405G, in both patients. Previously reported variants, V471L, R351K, T437A, and T437N, and novel R405G were found in multiple unrelated patients with DEE, showing consistent genotype–phenotype associations. These findings emphasize that the KCNC2 gene is causative for DEE and facilitates treatment and prognosis in patients with DEE due to KCNC2 mutations.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yejing Yu
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Neurology, Changchun Children’s Hospital, Changchun, China
| | - Xiaolong Deng
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehui Ma
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhisheng Liu
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., Beijing, China
| | - Dan Sun
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dan Sun,
| |
Collapse
|
13
|
Vinci M, Kursula P, Greco D, Elia M, Vetri L, Schepis C, Chiavetta V, Donadio S, Roccella M, Carotenuto M, Romano V, Calì F. Exome sequencing in a child with neurodevelopmental disorder and epilepsy: Variant analysis of the AHNAK2 gene. Mol Genet Genomic Med 2022; 10:e2012. [PMID: 35789128 PMCID: PMC9482394 DOI: 10.1002/mgg3.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background The AHNAK2 gene encodes a large nucleoprotein expressed in several tissues, including brain, squamous epithelia, smooth muscle, and neuropil. Its role in calcium signaling has been suggested and to date, clear evidence about its involvement in the pathogenesis of clinical disorders is still lacking. Methods Here, we report a female 24‐year‐old patient diagnosed with a cardio‐facio‐cutaneous‐like phenotype (CFC‐like), characterized by epilepsy, psychomotor development delay, atopic dermatitis, congenital heart disease, hypotonia, and facial dysmorphism, who is compound heterozygote for two missense mutations in the AHNAK2 gene detected by exome sequencing. Results This patient had no detectable variant in any of the genes known to be associated with the cardio‐facio‐cutaneous syndrome. Moreover, the mode of inheritance does not appear to be autosomal dominant, as it is in typical CFC syndrome. We have performed in silico assessment of mutation severity separately for each missense mutation, but this analysis excludes a severe effect on protein function. Protein structure predictions indicate the mutations are located in flexible regions possibly involved in molecular interactions. Conclusion We discuss an alternative interpretation on the potential involvement of the two missense mutations in the AHNAK2 gene on the expression of CFC‐like phenotype in this patient based on inter‐allelic complementation.
Collapse
Affiliation(s)
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Luigi Vetri
- Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | - Serena Donadio
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | |
Collapse
|
14
|
Mehinovic E, Gray T, Campbell M, Ekholm J, Wenger A, Rowell W, Grudo A, Grimwood J, Korlach J, Gurnett C, Constantino JN, Turner TN. Germline mosaicism of a missense variant in KCNC2 in a multiplex family with autism and epilepsy characterized by long-read sequencing. Am J Med Genet A 2022; 188:2071-2081. [PMID: 35366058 PMCID: PMC9197999 DOI: 10.1002/ajmg.a.62743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Currently, protein-coding de novo variants and large copy number variants have been identified as important for ~30% of individuals with autism. One approach to identify relevant variation in individuals who lack these types of events is by utilizing newer genomic technologies. In this study, highly accurate PacBio HiFi long-read sequencing was applied to a family with autism, epileptic encephalopathy, cognitive impairment, and mild dysmorphic features (two affected female siblings, unaffected parents, and one unaffected male sibling) with no known clinical variant. From our long-read sequencing data, a de novo missense variant in the KCNC2 gene (encodes Kv3.2) was identified in both affected children. This variant was phased to the paternal chromosome of origin and is likely a germline mosaic. In silico assessment revealed the variant was not in controls, highly conserved, and predicted damaging. This specific missense variant (Val473Ala) has been shown in both an ortholog and paralog of Kv3.2 to accelerate current decay, shift the voltage dependence of activation, and prevent the channel from entering a long-lasting open state. Seven additional missense variants have been identified in other individuals with neurodevelopmental disorders (p = 1.03 × 10-5 ). KCNC2 is most highly expressed in the brain; in particular, in the thalamus and is enriched in GABAergic neurons. Long-read sequencing was useful in discovering the relevant variant in this family with autism that had remained a mystery for several years and will potentially have great benefits in the clinic once it is widely available.
Collapse
Affiliation(s)
- Elvisa Mehinovic
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Teddi Gray
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Meghan Campbell
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | | | | | | | - Ari Grudo
- Pacific BiosciencesMenlo ParkCaliforniaUSA
| | - Jane Grimwood
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | - Christina Gurnett
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - John N. Constantino
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Tychele N. Turner
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
15
|
Rydzanicz M, Zwoliński P, Gasperowicz P, Pollak A, Kostrzewa G, Walczak A, Konarzewska M, Płoski R. A recurrent de novo variant supports KCNC2 involvement in the pathogenesis of developmental and epileptic encephalopathy. Am J Med Genet A 2021; 185:3384-3389. [PMID: 34448338 DOI: 10.1002/ajmg.a.62455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) are a heterogenous group of conditions characterized by the co-occurrence of epilepsy and intellectual/developmental disability. Despite several known DEE-related genes, including these encoding ion channels, still many cases remain without molecular diagnosis. Here, we present a 2-year-old girl with severe DEE in whom whole exome sequencing revealed de novo p.(Val471Leu) variant in the KCNC2 encoding Kv3.2, a voltage-gated potassium channel. To the best of our knowledge, this is the third DEE case due to KCNC2 mutation. Our clinical and molecular findings, particularly the recurrence of p.(Val471Leu) in patient with similar clinical phenotype, further support KCNC2 as a novel DEE-associated gene.
Collapse
Affiliation(s)
| | | | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Vetri L, Calì F, Vinci M, Amato C, Roccella M, Granata T, Freri E, Solazzi R, Romano V, Elia M. Letter to the Editor Regarding the Article "Whole-Exome Sequencing in NF1-Related West's Syndrome Leads to the Identification of KCNC2 as a Novel Candidate Gene for Epilepsy". Neuropediatrics 2021; 52:153. [PMID: 33111300 DOI: 10.1055/s-0040-1716904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luigi Vetri
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro" University of Palermo, Palermo, Italy
| | | | - Mirella Vinci
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro" University of Palermo, Palermo, Italy
| | | | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | |
Collapse
|
18
|
Zhang YH, Li Z, Zeng T, Chen L, Li H, Huang T, Cai YD. Detecting the Multiomics Signatures of Factor-Specific Inflammatory Effects on Airway Smooth Muscles. Front Genet 2021; 11:599970. [PMID: 33519902 PMCID: PMC7838645 DOI: 10.3389/fgene.2020.599970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Smooth muscles are a specific muscle subtype that is widely identified in the tissues of internal passageways. This muscle subtype has the capacity for controlled or regulated contraction and relaxation. Airway smooth muscles are a unique type of smooth muscles that constitute the effective, adjustable, and reactive wall that covers most areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2, which caused the world-wide COVID-19 pandemic, involves airway smooth muscles and their surrounding inflammatory environment. Therefore, airway smooth muscles and related inflammatory factors may play an irreplaceable role in the initiation and progression of several severe diseases. Many previous studies have attempted to reveal the potential relationships between interleukins and airway smooth muscle cells only on the omics level, and the continued existence of numerous false-positive optimal genes/transcripts cannot reflect the actual effective biological mechanisms underlying interleukin-based activation effects on airway smooth muscles. Here, on the basis of newly presented machine learning-based computational approaches, we identified specific regulatory factors and a series of rules that contribute to the activation and stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both interleukins on the epigenetic and/or transcriptional levels. The detected discriminative factors (genes) and rules can contribute to the identification of potential regulatory mechanisms linking airway smooth muscle tissues and inflammatory factors and help reveal specific pathological factors for diseases associated with airway smooth muscle inflammation on multiomics levels.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|