1
|
Jiang WF, Sun YM, Qiu XB, Wu SH, Ding YY, Li N, Yang CX, Xu YJ, Jiang TB, Yang YQ. Identification and Functional Investigation of SOX4 as a Novel Gene Underpinning Familial Atrial Fibrillation. Diagnostics (Basel) 2024; 14:2376. [PMID: 39518344 PMCID: PMC11544904 DOI: 10.3390/diagnostics14212376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Atrial fibrillation (AF) signifies the most prevalent supraventricular arrhythmia in humans and may lead to cerebral stroke, cardiac failure, and even premature demise. Aggregating strong evidence points to genetic components as a cornerstone in the etiopathogenesis of familial AF. However, the genetic determinants for AF in most patients remain elusive. Methods: A 4-generation pedigree with idiopathic AF and another cohort of 196 unrelated patients with idiopathic AF as well as 278 unrelated healthy volunteers were recruited from the Chinese population of Han ethnicity. A family-based whole-exome sequencing examination followed by a Sanger sequencing assay in all research subjects was implemented. The functional impacts of the identified SOX4 mutations were explored via a dual-reporter assay. Results: Two new heterozygous SOX4 mutations, NM_003107.3: c.211C>T; p.(Gln71*) and NM_003107.3: c.290G>A; p.(Trp97*), were observed in the family and 1 of 196 patients with idiopathic AF, respectively. The two mutations were absent in the 278 control individuals. The biochemical measurements revealed that both Gln71*- and Trp97*-mutant SOX4 failed to transactivate GJA1 (Cx43). Moreover, the two mutations nullified the synergistic activation of SCN5A by SOX4 and TBX5. Conclusions: The findings first indicate SOX4 as a gene predisposing to AF, providing a novel target for antenatal genetic screening, individualized prophylaxis, and precision treatment of AF.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.-B.Q.); (S.-H.W.)
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (X.-B.Q.); (S.-H.W.)
| | - Yuan-Yuan Ding
- Shanghai Health Development Research Center, and Shanghai Medical Information Center, Shanghai 200031, China;
| | - Ning Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China;
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China; (C.-X.Y.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China; (C.-X.Y.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Ting-Bo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China; (C.-X.Y.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is the most common cardiac arrhythmia worldwide. There is considerable interest in better understanding the molecular genetics and biology of atrial fibrillation to inform the development of new therapies and improve clinical management. This review summarizes recent advances in our understanding of the genetic basis of atrial fibrillation and new efforts to utilize genetics to inform clinical management. RECENT FINDINGS Genome-wide association studies in diverse populations have increased the number of genetic loci associated with atrial fibrillation and its specific subtypes. Large-scale biobanks with deep phenotyping have provided invaluable data to study the impact of both common and rare variants on atrial fibrillation, susceptibility, and prognosis. Polygenic risk scores help improve individual atrial fibrillation risk stratification and prognostication. SUMMARY Our understanding of atrial fibrillation genetics is rapidly improving with larger and more diverse genome-wide association studies. Translating genetic discoveries into molecular pathways and new therapeutic targets remains a bottleneck in the development of new therapies for atrial fibrillation. Genetic risk scores have shown early promise in improving atrial fibrillation risk stratification; however, their broader utility for the general population remains unclear.
Collapse
Affiliation(s)
- David S M Lee
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center.,Department of Surgery.,Department of Genetics, University of Pennsylvania Perelman School of Medicine
| | - Michael G Levin
- Corporal Michael J. Crescenz VA Medical Center.,Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023; 13:biom13020358. [PMID: 36830727 PMCID: PMC9953631 DOI: 10.3390/biom13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in newborns. ISL1 is a master transcription factor in second heart field development, whereas the roles of ISL1 gene promoter variants in TOF patients have not been genetically investigated. Total DNA extraction from 601 human subjects, including 308 TOF patients and 293 healthy controls, and Sanger sequencing were performed. Four variants (including one novel heterozygous variant) within the ISL1 gene promoter were only found in TOF patients. Functional analysis of DNA sequence variants was performed by using the dual-luciferase reporter assay and demonstrated that three of the four variants significantly decreased the transcriptional activity of ISL1 gene promoter in HL-1 cells (p < 0.05). Further, the online JASPAR database and electrophoretic mobility shift assay showed that the three variants affected the binding of transcription factors and altered ISL1 expression levels. In conclusion, the current study for the first time demonstrated that the variants identified from the ISL1 gene promoter region are likely involved in the development of TOF by affecting the transcriptional activity and altering the ISL1 expression level. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of TOF.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Zhuo Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- Correspondence: or ; Tel.: +86-22-6520-9089
| |
Collapse
|
4
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Identification and functional analysis of genetic variants of ISL1 gene promoter in human atrial septal defects. J Gene Med 2022; 24:e3450. [PMID: 36170181 DOI: 10.1002/jgm.3450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Atrial septal defect (ASD) is a common type of congenital heart disease. A gene promoter plays pivotal role in the disease development. This study was designed to investigate the pathological role of variants of the ISL1 gene promoter region in ASD patients. METHODS Total DNA extracted from 625 subjects, including 332 ASD patients and 293 healthy controls, was sequenced to identify variants in the promoter region of ISL1 gene. Further functional analyses of the variants were performed with dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). All possible binding sites of transcription factor affected by the identified variants were predicted using the JASPAR database. RESULTS Four variants in the ISL1 gene promoter were found only in patients with ASD by sequencing. Three of the four variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] significantly decreased the transcriptional activities compared with the wild-type ISL1 gene promoter (p < 0.05). The EMSA revealed that these variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] in the ISL1 gene promoter affected the number and affinity of binding sites of transcription factors. Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants. CONCLUSIONS These sequence variants identified from the promoter region of ISL1 gene in ASD patients are probably involved in the development of ASD by affecting the transcriptional activity and altering ISL1 levels. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of ASD.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhuo Chen
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
5
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
6
|
Guo YH, Yang YQ. Atrial Fibrillation: Focus on Myocardial Connexins and Gap Junctions. BIOLOGY 2022; 11:489. [PMID: 35453689 PMCID: PMC9029470 DOI: 10.3390/biology11040489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) represents the most common type of clinical cardiac arrhythmia worldwide and contributes to substantial morbidity, mortality and socioeconomic burden. Aggregating evidence highlights the strong genetic basis of AF. In addition to chromosomal abnormalities, pathogenic mutations in over 50 genes have been causally linked to AF, of which the majority encode ion channels, cardiac structural proteins, transcription factors and gap junction channels. In the heart, gap junctions comprised of connexins (Cxs) form intercellular pathways responsible for electrical coupling and rapid coordinated action potential propagation between adjacent cardiomyocytes. Among the 21 isoforms of connexins already identified in the mammal genomes, 5 isoforms (Cx37, Cx40, Cx43, Cx45 and Cx46) are expressed in human heart. Abnormal electrical coupling between cardiomyocytes caused by structural remodeling of gap junction channels (alterations in connexin distribution and protein levels) has been associated with enhanced susceptibility to AF and recent studies have revealed multiple causative mutations or polymorphisms in 4 isoforms of connexins predisposing to AF. In this review, an overview of the genetics of AF is made, with a focus on the roles of mutant myocardial connexins and gap junctions in the pathogenesis of AF, to underscore the hypothesis that cardiac connexins are a major molecular target in the management of AF.
Collapse
Affiliation(s)
- Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China;
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China;
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Center Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
7
|
Gauvrit S, Bossaer J, Lee J, Collins MM. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis 2022; 9:jcdd9010013. [PMID: 35050223 PMCID: PMC8779270 DOI: 10.3390/jcdd9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.
Collapse
|
8
|
Guo XJ, Qiu XB, Wang J, Guo YH, Yang CX, Li L, Gao RF, Ke ZP, Di RM, Sun YM, Xu YJ, Yang YQ. PRRX1 Loss-of-Function Mutations Underlying Familial Atrial Fibrillation. J Am Heart Assoc 2021; 10:e023517. [PMID: 34845933 PMCID: PMC9075371 DOI: 10.1161/jaha.121.023517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Atrial fibrillation (AF) is the most common form of clinical cardiac dysrhythmia responsible for thromboembolic cerebral stroke, congestive heart failure, and death. Aggregating evidence highlights the strong genetic basis of AF. Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of patients, the genetic determinants underpinning AF remain elusive. Methods and Results By genome‐wide screening with polymorphic microsatellite markers and linkage analysis in a 4‐generation Chinese family affected with autosomal‐dominant AF, a novel locus for AF was mapped to chromosome 1q24.2–q25.1, a 3.20‐cM (≈4.19 Mbp) interval between markers D1S2851 and D1S218, with the greatest 2‐point logarithm of odds score of 4.8165 for the marker D1S452 at recombination fraction=0.00. Whole‐exome sequencing and bioinformatics analyses showed that within the mapping region, only the mutation in the paired related homeobox 1 (PRRX1) gene, NM_022716.4:c.319C>T;(p.Gln107*), cosegregated with AF in the family. In addition, sequencing analyses of PRRX1 in another cohort of 225 unrelated patients with AF revealed a new mutation, NM_022716.4:c.437G>T; (p.Arg146Ile), in a patient. The 2 mutations were absent in 908 control subjects. Biological analyses in HeLa cells demonstrated that the 2 mutants had significantly diminished transactivation on the target genes ISL1 and SHOX2 and markedly decreased ability to bind the promoters of ISL1 and SHOX2 (2 genes causally linked to AF), although with normal intracellular distribution. Conclusions This study first indicates that PRRX1 loss‐of‐function mutations predispose to AF, which provides novel insight into the molecular pathogenesis underpinning AF, implying potential implications for precisive prophylaxis and management of AF.
Collapse
Affiliation(s)
- Xiao-Juan Guo
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Xing-Biao Qiu
- Department of Cardiology Shanghai Chest HospitalShanghai Jiao Tong University Shanghai China
| | - Jun Wang
- Department of Cardiology Shanghai Jing'an District Central HospitalFudan University Shanghai China
| | - Yu-Han Guo
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Chen-Xi Yang
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China.,Institute of Medical GeneticsTongji University Shanghai China
| | - Ri-Feng Gao
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Zun-Ping Ke
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Ruo-Min Di
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Yu-Min Sun
- Department of Cardiology Shanghai Jing'an District Central HospitalFudan University Shanghai China
| | - Ying-Jia Xu
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China
| | - Yi-Qing Yang
- Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People's HospitalFudan University Shanghai China.,Cardiovascular Research Laboratory and Central Laboratory Shanghai Fifth People's HospitalFudan University Shanghai China
| |
Collapse
|
9
|
Wang TM, Wang SS, Xu YJ, Zhao CM, Qiao XH, Yang CX, Liu XY, Yang YQ. SOX17 Loss-of-Function Mutation Underlying Familial Pulmonary Arterial Hypertension. Int Heart J 2021; 62:566-574. [PMID: 33952808 DOI: 10.1536/ihj.20-711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) refers to a rare, progressive disorder that is characterized by occlusive pulmonary vascular remodeling, resulting in increased pulmonary arterial pressure, right-sided heart failure, and eventual death. Emerging evidence from genetic investigations of pediatric-onset PAH highlights the strong genetic basis underpinning PAH, and deleterious variants in multiple genes have been found to cause PAH. Nevertheless, PAH is of substantial genetic heterogeneity, and the genetic defects underlying PAH in the overwhelming majority of cases remain elusive. In this investigation, a consanguineous family suffering from PAH transmitted as an autosomal-dominant trait was identified. Through whole-exome sequencing and bioinformatic analyses as well as Sanger sequencing analyses of the PAH family, a novel heterozygous SOX17 mutation, NM_022454.4: c.379C>T; p. (Gln127*), was found to co-segregate with the disease in the family, with complete penetrance. The nonsense mutation was neither observed in 612 unrelated healthy volunteers nor retrieved in the population genetic databases encompassing the Genome Aggregation Database, the Exome Aggregation Consortium database, and the Single Nucleotide Polymorphism database. Biological analyses using a dual-luciferase reporter assay system revealed that the Gln127*-mutant SOX17 protein lost the ability to transcriptionally activate its target gene NOTCH1. Moreover, the Gln127*-mutant SOX17 protein exhibited no inhibitory effect on the function of CTNNB1-encode β-catenin, which is a key player in vascular morphogenesis. This research firstly links SOX17 loss-of-function mutation to familial PAH, which provides novel insight into the molecular pathogenesis of PAH, suggesting potential implications for genetic and prognostic risk evaluation as well as personalized prophylaxis of the family members affected with PAH.
Collapse
Affiliation(s)
- Tian-Ming Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Shan-Shan Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University.,Central Laboratory, Shanghai Fifth People's Hospital, Fudan University
| |
Collapse
|
10
|
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH, Yang YQ. SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet 2021; 64:104211. [PMID: 33794346 DOI: 10.1016/j.ejmg.2021.104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
As the most prevalent form of human birth defect, congenital heart disease (CHD) contributes to substantial morbidity, mortality and socioeconomic burden worldwide. Aggregating evidence has convincingly demonstrated that genetic defects exert a pivotal role in the pathogenesis of CHD, and causative mutations in multiple genes have been causally linked to CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic components underpinning CHD in the overwhelming majority of patients remain obscure. In this research, a four-generation consanguineous family suffering from CHD transmitted in an autosomal dominant mode was recruited. By whole-exome sequencing and bioinformatics analyses as well as Sanger sequencing analyses of the family members, a new heterozygous SOX17 variation, NM_022454.4: c.553G > T; p.(Glu185*), was identified to co-segregate with CHD in the family, with complete penetrance. The nonsense variation was neither detected in 310 unrelated healthy volunteers used as controls nor retrieved in such population genetics databases as the Exome Aggregation Consortium database, Genome Aggregation Database, and the Single Nucleotide Polymorphism database. Functional assays by utilizing a dual-luciferase reporter assay system unveiled that the Glu185*-mutant SOX17 protein had no transcriptional activity on its two target genes NOTCH1 and GATA4, which have been reported to cause CHD. Furthermore, the mutation abrogated the synergistic transactivation between SOX17 and NKX2.5, another established CHD-causing transcription factor. These findings firstly indicate SOX17 loss-of-function mutation predisposes to familial CHD, which adds novel insight to the molecular mechanism of CHD, implying potential implications for genetic risk appraisal and individualized prophylaxis of the family members affected with CHD.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, 264003, Shandong Province, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
KLF15 Loss-of-Function Mutation Underlying Atrial Fibrillation as well as Ventricular Arrhythmias and Cardiomyopathy. Genes (Basel) 2021; 12:genes12030408. [PMID: 33809104 PMCID: PMC8001991 DOI: 10.3390/genes12030408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 12/04/2022] Open
Abstract
Atrial fibrillation (AF) represents the most common type of clinical cardiac arrhythmia and substantially increases the risks of cerebral stroke, heart failure and death. Accumulating evidence has convincingly demonstrated the strong genetic basis of AF, and an increasing number of pathogenic variations in over 50 genes have been causally linked to AF. Nevertheless, AF is of pronounced genetic heterogeneity, and the genetic determinants underpinning AF in most patients remain obscure. In the current investigation, a Chinese pedigree with AF as well as ventricular arrhythmias and hypertrophic cardiomyopathy was recruited. Whole exome sequencing and bioinformatic analysis of the available family members were conducted, and a novel heterozygous variation in the KLF15 gene (encoding Krüppel-like factor 15, a transcription factor critical for cardiac electrophysiology and structural remodeling), NM_014079.4: c.685A>T; p.(Lys229*), was identified. The variation was verified by Sanger sequencing and segregated with autosomal dominant AF in the family with complete penetrance. The variation was absent from 300 unrelated healthy subjects used as controls. In functional assays using a dual-luciferase assay system, mutant KLF15 showed neither transcriptional activation of the KChIP2 promoter nor transcriptional inhibition of the CTGF promoter, alone or in the presence of TGFB1, a key player in the pathogenesis of arrhythmias and cardiomyopathies. The findings indicate KLF15 as a new causative gene responsible for AF as well as ventricular arrhythmias and hypertrophic cardiomyopathy, and they provide novel insight into the molecular mechanisms underlying cardiac arrhythmias and hypertrophic cardiomyopathy.
Collapse
|
12
|
Li RG, Xu YJ, Ye WG, Li YJ, Chen H, Qiu XB, Yang YQ, Bai D. Connexin45 (GJC1) loss-of-function mutation contributes to familial atrial fibrillation and conduction disease. Heart Rhythm 2021; 18:684-693. [PMID: 33429106 DOI: 10.1016/j.hrthm.2020.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) represents the most common clinical cardiac arrhythmia and substantially increases the risk of cerebral stroke, heart failure, and death. Although causative genes for AF have been identified, the genetic determinants for AF remain largely unclear. OBJECTIVE This study aimed to investigate the molecular basis of AF in a Chinese kindred. METHODS A 4-generation family with autosomal-dominant AF and other arrhythmias (atrioventricular block, sinus bradycardia, and premature ventricular contractions) was recruited. Genome-wide scan with microsatellite markers and linkage analysis as well as whole-exome sequencing analysis were performed. Electrophysiological characteristics and subcellular localization of the AF-linked mutant were analyzed using dual whole-cell patch clamps and confocal microscopy, respectively. RESULTS A novel genetic locus for AF was mapped to chromosome 17q21.3, a 3.23-cM interval between markers D17S951 and D17S931, with a maximum 2-point logarithm of odds score of 4.2144 at marker D17S1868. Sequencing analysis revealed a heterozygous mutation in the mapping region, NM_005497.4:c.703A>T;p.(M235L), in the GJC1 gene encoding connexin45 (Cx45). The mutation cosegregated with AF in the family and was absent in 632 control individuals. The mutation decreased the coupling conductance in cell pairs (M235L/M235L, M235L/Cx45, M235L/Cx43, and M235L/Cx40), likely because of impaired subcellular localization. CONCLUSION This study defines a novel genetic locus for AF on chromosome 17q21.3 and reveals a loss-of-function mutation in GJC1 (Cx45) contributing to AF and other cardiac arrhythmias.
Collapse
Affiliation(s)
- Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Willy G Ye
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Honghong Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Donglin Bai
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
13
|
Qiao Q, Zhao CM, Yang CX, Gu JN, Guo YH, Zhang M, Li RG, Qiu XB, Xu YJ, Yang YQ. Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy. Clin Chem Lab Med 2020; 59:955-963. [PMID: 33554560 DOI: 10.1515/cclm-2020-1318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|