1
|
Ussher JM, Carpenter M, Power R, Ryan S, Allison K, Hart B, Hawkey A, Perz J. "I've had constant fears that I'll get cancer": the construction and experience of medical intervention on intersex bodies to reduce cancer risk. Int J Qual Stud Health Well-being 2024; 19:2356924. [PMID: 38796859 PMCID: PMC11134048 DOI: 10.1080/17482631.2024.2356924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This paper examines the subjective experience of medical interventions on intersex bodies to reduce cancer risk. METHODS Twenty-five individuals with intersex variations took part in semi-structured interviews, analysed through thematic discourse analysis. RESULTS Intersex bodies were positioned as inherently sick and in need of modification, with cancer risk legitimating surgical and hormonal intervention. This resulted in embodied shame, with negative impacts on fertility and sexual wellbeing. However, many participants resisted discourses of bio-pathologisation and embraced intersex status. Some medical interventions, such as HRT, were perceived to have increased the risk of cancer. Absence of informed consent, and lack of information about intersex status and the consequences of medical intervention, was positioned as a human rights violation. This was compounded by ongoing medical mismanagement, including health care professional lack of understanding of intersex variations, and the objectification or stigmatization of intersex people within healthcare. The consequence was non-disclosure of intersex status in health contexts and lack of trust in health care professionals. CONCLUSIONS The legitimacy of poorly-evidenced cancer risk discourses to justify medical intervention on intersex bodies needs to be challenged. Healthcare practitioners need to be provided with education and training about cultural safety practices for working with intersex people.
Collapse
Affiliation(s)
- Jane M. Ussher
- Translational Health Research Institute, School of Medicine, Western Sydney University, Penrith, Australia
| | - Morgan Carpenter
- Intersex Human Rights Australia, Sydney, Australia
- Faculty of Medicine and Health, Sydney Health Ethics, Sydney, Australia
| | - Rosalie Power
- Translational Health Research Institute, School of Medicine, Western Sydney University, Penrith, Australia
| | - Samantha Ryan
- Translational Health Research Institute, School of Medicine, Western Sydney University, Penrith, Australia
| | - Kimberley Allison
- Translational Health Research Institute, School of Medicine, Western Sydney University, Penrith, Australia
| | - Bonnie Hart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Alexandra Hawkey
- Translational Health Research Institute, School of Medicine, Western Sydney University, Penrith, Australia
| | - Janette Perz
- Translational Health Research Institute, School of Medicine, Western Sydney University, Penrith, Australia
| |
Collapse
|
2
|
Wacharasindhu S, Ittiwut C, Ittiwut R, Aroonparkmongkol S, Suphapeetiporn K. A Novel NR5A1 Mutation in a Thai Boy with 46, XY DSD. J Pediatr Genet 2024; 13:181-184. [PMID: 39086445 PMCID: PMC11288713 DOI: 10.1055/s-0043-1764480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/13/2023] [Indexed: 03/22/2023]
Abstract
Disorders of sex development (DSD) can be classified as 46,XX DSD, 46,XY DSD, and sex chromosome DSD. Several underlying causes including associated genes have been reported. Steroidogenic factor-1 is encoded by the NR5A1 gene, a crucial regulator of steroidogenesis in the growth of the adrenal and gonadal tissues. It has been discovered to be responsible for 10 to 20% of 46, XY DSD cases. Here, we described a 2-month-old infant who had ambiguous genitalia and 46, XY. Using whole exome sequencing followed by polymerase chain reaction-Sanger sequencing, a novel heterozygous nonsense c.1249C > T (p.Gln417Ter) variant in the NR5A1 gene was identified. It is present in his mother but absent in his father and maternal aunt and uncle. At the age of 7 months, the patient received a monthly intramuscular injection of low-dose testosterone for 3 months in a row. His penile length and diameter increased from 1.8 to 3 cm and from 0.8 to 1.3 cm, respectively. The patient also had normal adrenal reserve function by adrenocorticotropic hormone stimulation test. This study identified a novel causative p.Q417X (c.1249C > T) variant in NR5A1 causing 46,XY DSD in a Thai boy which is inherited from his unaffected mother.
Collapse
Affiliation(s)
- Suttipong Wacharasindhu
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chupong Ittiwut
- Central Laboratory, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphab Aroonparkmongkol
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Al-Sahar NF, Al-Ali AJ, Mansour AA. Spectrum of Disorders of Sex Development: A Single-Center Experience in the Southern Area of Iraq. Cureus 2024; 16:e67571. [PMID: 39310453 PMCID: PMC11416725 DOI: 10.7759/cureus.67571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND The most common presentation of disorders of sex development (DSD) is in the neonatal period when a baby is born with atypical ("ambiguous") genitalia, making it unclear whether the child is a boy or a girl. This study aims to provide an overview of the DSD spectrum, seen in Faiha Specialized Diabetes, Endocrine and Metabolism Center (FDEMC), Basrah, southern area of Iraq. METHODS A retrospective study on patients with DSD was referred to FDEMC, a tertiary center in Basrah, between January 2009 and December 2023. RESULTS Out of the total 150 studied patients, individuals above 15 years old comprised the majority. Sex chromosomal DSD made up 37.3% of the cases, while 46, XY DSD comprised 34.7%, and 46, XX DSD accounted for 28% of the total. CONCLUSION Many patients with DSD in Basrah were diagnosed late, beyond infancy. Increasing awareness among healthcare providers and families is essential for early diagnosis during infancy.
Collapse
Affiliation(s)
- Nazar F Al-Sahar
- Endocrinology/Diabetes/Metabolism, Faiha Specialized Diabetes, Endocrine and Metabolism Center (FDEMC) University of Basrah, Basrah, IRQ
| | - Ahmad J Al-Ali
- Pediatric Endocrinology, Faiha Specialized Diabetes, Endocrine and Metabolism Center (FDEMC) University of Basrah, Basrah, IRQ
| | - Abbas A Mansour
- Diabetes and Endocrinology, Faiha Specialized Diabetes, Endocrine and Metabolism Center (FDEMC) University of Basrah, Basrah, IRQ
| |
Collapse
|
4
|
Nagarajaiah P, Bhuyan AK, Baro A, Saikia UK. Variability in Sex Assignment at Birth and Etiological Diagnosis of Differences of Sex Development: A Ten-Year Institutional Experience from Assam. Indian J Endocrinol Metab 2024; 28:417-423. [PMID: 39371652 PMCID: PMC11451964 DOI: 10.4103/ijem.ijem_385_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/21/2024] [Accepted: 05/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Differences of sex development (DSD) also known as disorders of sex development encompass a wide spectrum of conditions with varying clinical presentations across different age groups. This study aims to analyse various aetiologies of DSD in Assam and the variability of sex assignment at birth. Methods This retrospective study included the records of people with DSD presenting to a tertiary centre over 10 years. The age at presentation, sex assignment, gender identity, degree of ambiguity, pertinent hormonal and radiological investigations were noted. Descriptive statistics were used for analysis. Results The age of presentation varied widely, with peaks during infancy and puberty. The most prevalent DSD type was 46, XY DSD (61.2%), followed by 46, XX DSD (19.7%) and sex chromosome DSD (19.1%). Among people with 46, XY DSD, androgen biosynthesis disorders were dominant, particularly 5-a reductase 2 deficiency (46.7%). Among 46, XX DSDs, the most common subtype was androgen excess disorders (51.7%) comprising 21a-hydroxylase deficiency (48,3%) and 11β-hydroxylase deficiency (3.4%). Turner syndrome was most prevalent among sex chromosome DSD (71.4%) with others being Klinefelter syndrome, 45, XO/46, XY mixed gonadal dysgenesis and 46, XX/46, XY chimerism. The degree of ambiguity was variable depending on the type of DSD and similarly, sex assignment at birth was influenced by the level of ambiguity. Conclusion The study underscores the significance of comprehensive approaches for DSD diagnosis and management, especially in regions with limited resources. The insights gained from this clinical study offer valuable understanding and aid in addressing the complexities associated with these conditions.
Collapse
Affiliation(s)
- Praveen Nagarajaiah
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Ashok K. Bhuyan
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Abhamoni Baro
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Uma K. Saikia
- Department of Endocrinology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| |
Collapse
|
5
|
Hattori A, Fukami M. Nuclear Receptor Gene Variants Underlying Disorders/Differences of Sex Development through Abnormal Testicular Development. Biomolecules 2023; 13:691. [PMID: 37189438 PMCID: PMC10135730 DOI: 10.3390/biom13040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Gonadal development is the first step in human reproduction. Aberrant gonadal development during the fetal period is a major cause of disorders/differences of sex development (DSD). To date, pathogenic variants of three nuclear receptor genes (NR5A1, NR0B1, and NR2F2) have been reported to cause DSD via atypical testicular development. In this review article, we describe the clinical significance of the NR5A1 variants as the cause of DSD and introduce novel findings from recent studies. NR5A1 variants are associated with 46,XY DSD and 46,XX testicular/ovotesticular DSD. Notably, both 46,XX DSD and 46,XY DSD caused by the NR5A1 variants show remarkable phenotypic variability, to which digenic/oligogenic inheritances potentially contribute. Additionally, we discuss the roles of NR0B1 and NR2F2 in the etiology of DSD. NR0B1 acts as an anti-testicular gene. Duplications containing NR0B1 result in 46,XY DSD, whereas deletions encompassing NR0B1 can underlie 46,XX testicular/ovotesticular DSD. NR2F2 has recently been reported as a causative gene for 46,XX testicular/ovotesticular DSD and possibly for 46,XY DSD, although the role of NR2F2 in gonadal development is unclear. The knowledge about these three nuclear receptors provides novel insights into the molecular networks involved in the gonadal development in human fetuses.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
6
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
7
|
Man E, Mushtaq I, Barnicoat A, Carmichael P, Hughes CR, Davies K, Aitkenhead H, Amin R, Buchanan CR, Cherian A, Costa NJ, Creighton SM, Duffy PG, Hewson E, Hindmarsh PC, Monzani LC, Peters CJ, Ransley PG, Smeulders N, Spoudeas HA, Wood D, Hughes IA, Katugampola H, Brain CE, Dattani MT, Achermann JC. A Single-Center, Observational Study of 607 Children and Young People Presenting With Differences of Sex Development (DSD). J Endocr Soc 2022; 7:bvac165. [DOI: 10.1210/jendso/bvac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Context
Differences of sex development (DSD) represent a wide range of conditions presenting at different ages to various health professionals. Establishing a diagnosis, supporting the family, and developing a management plan are important.
Objective
We aimed to better understand the presentation and prevalence of pediatric DSD.
Methods
A retrospective, observational cohort study was undertaken in a single tertiary pediatric center of all children and young people (CYP) referred to a DSD multidisciplinary team over 25 years (1995-2019). In total, 607 CYP (520 regional referrals) were included. Data were analyzed for diagnosis, sex-assignment, age and mode of presentation, additional phenotypic features, mortality, and approximate point prevalence.
Results
Among the 3 major DSD categories, sex chromosome DSD was diagnosed in 11.2% (68/607) (most commonly 45,X/46,XY mosaicism), 46,XY DSD in 61.1% (371/607) (multiple diagnoses often with associated features), while 46,XX DSD occurred in 27.7% (168/607) (often 21-hydroxylase deficiency). Most children (80.1%) presented as neonates, usually with atypical genitalia, adrenal insufficiency, undescended testes or hernias. Those presenting later had diverse features. Rarely, the diagnosis was made antenatally (3.8%, n = 23) or following incidental karyotyping/family history (n = 14). Mortality was surprisingly high in 46,XY children, usually due to complex associated features (46,XY girls, 8.3%; 46,XY boys, 2.7%). The approximate point prevalence of neonatal referrals for investigation of DSD was 1 in 6347 births, and 1 in 5101 overall throughout childhood.
Conclusion
DSD represent a diverse range of conditions that can present at different ages. Pathways for expert diagnosis and management are important to optimize care.
Collapse
Affiliation(s)
- Elim Man
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London , London WC1N 1EH , UK
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
- Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital , Hong Kong SAR , People’s Republic of China
| | - Imran Mushtaq
- Department of Urology, Great Ormond Street Hospital for Children , London WC1N 3JH , UK
| | - Angela Barnicoat
- Department of Clinical Genetics, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Polly Carmichael
- Department of Clinical Psychology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
- Gender Identity Development Service, Tavistock and Portman NHS Foundation Trust , London NW3 5BA , UK
| | - Claire R Hughes
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London , London EC1M 6BQ , UK
| | - Kate Davies
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
- Institute of Health and Social Care, London South Bank University , London SE1 0AA , UK
| | - Helen Aitkenhead
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Rakesh Amin
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Charles R Buchanan
- Department of Child Health, King's College Hospital NHS Foundation Trust , London SE5 9RS , UK
| | - Abraham Cherian
- Department of Urology, Great Ormond Street Hospital for Children , London WC1N 3JH , UK
| | - Nikola J Costa
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Sarah M Creighton
- Institute for Women's Health, University College London Hospitals NHS Foundation Trust , London NW1 2BU , UK
| | - Patrick G Duffy
- Department of Urology, Great Ormond Street Hospital for Children , London WC1N 3JH , UK
| | - Emma Hewson
- Department of Clinical Psychology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Peter C Hindmarsh
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
- Department of Paediatrics, University College London Hospitals NHS Foundation Trust , London NW1 2BU , UK
| | - Louisa C Monzani
- Department of Clinical Psychology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Catherine J Peters
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Philip G Ransley
- Department of Urology, Great Ormond Street Hospital for Children , London WC1N 3JH , UK
| | - Naima Smeulders
- Department of Urology, Great Ormond Street Hospital for Children , London WC1N 3JH , UK
| | - Helen A Spoudeas
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London , London WC1N 1EH , UK
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Dan Wood
- Department of Urology, Great Ormond Street Hospital for Children , London WC1N 3JH , UK
- Department of Urology, University College London Hospitals NHS Foundation Trust , London NW1 2BU , UK
- Department of Urology, Children's Hospital Colorado and University of Colorado , Aurora, Colorado 80045 , USA
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge , Cambridge CB2 0QQ , UK
| | - Harshini Katugampola
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Caroline E Brain
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - Mehul T Dattani
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London , London WC1N 1EH , UK
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| | - John C Achermann
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London , London WC1N 1EH , UK
- Department of Endocrinology, Great Ormond Street Hospital NHS Foundation Trust , London WC1N 3JH , UK
| |
Collapse
|
8
|
Disorder of Sex Development Due to 17-Beta-Hydroxysteroid Dehydrogenase Type 3 Deficiency: A Case Report and Review of 70 Different HSD17B3 Mutations Reported in 239 Patients. Int J Mol Sci 2022; 23:ijms231710026. [PMID: 36077423 PMCID: PMC9456484 DOI: 10.3390/ijms231710026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The 17-beta-hydroxysteroid dehydrogenase type 3 (17-β-HSD3) enzyme converts androstenedione to testosterone and is encoded by the HSD17B3 gene. Homozygous or compound heterozygous HSD17B3 mutations block the synthesis of testosterone in the fetal testis, resulting in a Disorder of Sex Development (DSD). We describe a child raised as a female in whom the discovery of testes in the inguinal canals led to a genetic study by whole exome sequencing (WES) and to the identification of a compound heterozygous mutation of the HSD17B3 gene (c.608C>T, p.Ala203Val, and c.645A>T, p.Glu215Asp). Furthermore, we review all HSD17B3 mutations published so far in cases of 17-β-HSD3 deficiency. A total of 70 different HSD17B3 mutations have so far been reported in 239 patients from 187 families. A total of 118 families had homozygous mutations, 63 had compound heterozygous mutations and six had undetermined genotypes. Mutations occurred in all 11 exons and were missense (55%), splice-site (29%), small deletions and insertions (7%), nonsense (5%), and multiple exon deletions and duplications (2%). Several mutations were recurrent and missense mutations at codon 80 and the splice-site mutation c.277+4A>T each represented 17% of all mutated alleles. These findings may be useful to those involved in the clinical management and genetic diagnosis of this disorder.
Collapse
|
9
|
46,XY disorders of sex development: the use of NGS for prevalent variants. Hum Genet 2022; 141:1863-1873. [PMID: 35729303 DOI: 10.1007/s00439-022-02465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/05/2022] [Indexed: 11/04/2022]
Abstract
46,XY disorders of sex development (DSD) present with diverse phenotypes and complicated genetic causes. Precise genetic diagnosis contributes to accurate management, and targeted next-generation sequencing (NGS) and whole-exome sequencing are powerful tools for investigating DSD. However, the prevalent variants resulting in 46,XY DSD remain unclear, especially those associated with mild forms, such as isolated hypospadias, inguinal cryptorchidism, and micropenis. From 2019 to 2021, 74 patients with 46,XY DSD (48 typical and 26 mild) from the First Affiliated Hospital of Sun Yat-sen University were enrolled in our cohort study for targeted NGS or whole-exome sequencing. Our targeted 46,XY DSD panel included 108 genes involved in disorders of gonadal development and differentiation, steroid hormone synthesis and activation, persistent Müllerian duct syndrome, idiopathic hypogonadotropic hypogonadism, syndromic disorder, and others. Variants were classified as pathogenic, likely pathogenic, variant of uncertain significance, likely benign, or benign following the American College of Medical Genetics guidelines. As a result, 28 of 74 (37.8%) patients with pathogenic and/or likely pathogenic variants acquired genetic diagnoses. The Mild DSD patients acquired a diagnosis rate of 30.7%. We detected 44 variants in 28 DSD genes from 31 patients, including 33 novel and 11 reported variants. Heterozygous (65%) and missense (70.5%) variants were the most common. Variants associated with steroid hormone synthesis and activation were the main genetic causes of 46,XY DSD. In conclusion, 46,XY DSD manifests as a series of complicated polygenetic diseases. NGS reveals prevalent variants and improves the genetic diagnoses of 46,XY DSD, regardless of severity.
Collapse
|
10
|
Kapczuk K, Kędzia W. Primary Amenorrhea Due to Anatomical Abnormalities of the Reproductive Tract: Molecular Insight. Int J Mol Sci 2021; 22:ijms222111495. [PMID: 34768925 PMCID: PMC8584168 DOI: 10.3390/ijms222111495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital anomalies of the female reproductive tract that present with primary amenorrhea involve Müllerian aplasia, also known as Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS), and cervical and vaginal anomalies that completely obstruct the reproductive tract. Karyotype abnormalities do not exclude the diagnosis of MRKHS. Familial cases of Müllerian anomalies and associated malformations of the urinary and skeletal systems strongly suggest a complex genetic etiology, but so far, the molecular mechanism in the vast majority of cases remains unknown. Primary amenorrhea may also be the first presentation of complete androgen insensitivity syndrome, steroid 5α-reductase type 2 deficiency, 17β-hydroxysteroid dehydrogenase type 3 deficiency, and Leydig cells hypoplasia type 1; therefore, these disorders should be considered in the differential diagnosis of the congenital absence of the uterus and vagina. The molecular diagnosis in the majority of these cases can be established.
Collapse
|
11
|
Brunello FG, Rey RA. AMH and AMHR2 Involvement in Congenital Disorders of Sex Development. Sex Dev 2021; 16:138-146. [PMID: 34515230 DOI: 10.1159/000518273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Anti-müllerian hormone (AMH) is 1 of the 2 testicular hormones involved in male development of the genitalia during fetal life. When the testes differentiate, AMH is secreted by Sertoli cells and binds to its specific receptor type II (AMHR2) on the müllerian ducts, inducing their regression. In the female fetus, the lack of AMH allows the müllerian ducts to form the fallopian tubes, the uterus, and the upper part of the vagina. The human AMH gene maps to 19p13.3 and consists of 5 exons and 4 introns spanning 2,764 bp. The AMHR2 gene maps to 12q13.13, consists of 11 exons, and is 7,817 bp long. Defects in the AMH pathway are the underlying etiology of a subgroup of disorders of sex development (DSD) in 46,XY patients. The condition is known as the persistent müllerian duct syndrome (PMDS), characterized by the existence of a uterus and fallopian tubes in a boy with normally virilized external genitalia. Approximately 200 cases of patients with PMDS have been reported to date with clinical, biochemical, and molecular genetic characterization. An updated review is provided in this paper. With highly sensitive techniques, AMH and AMHR2 expression has also been detected in other tissues, and massive sequencing technologies have unveiled variants in AMH and AMHR2 genes in hitherto unsuspected conditions.
Collapse
Affiliation(s)
- Franco G Brunello
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|