1
|
Bach MY, Miron SR, Kurolap A, Feldman HB. PUF60 loss-of-function with normal cognition should be considered in the differential diagnosis of Klippel-Feil syndrome. Am J Med Genet A 2024; 194:e63550. [PMID: 38297485 DOI: 10.1002/ajmg.a.63550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.
Collapse
Affiliation(s)
- Michal Yacobi Bach
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Endocrinology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sivan Reytan Miron
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Miao M, Wang J, Guo C, Su X, Sun L, Lu S. Identification of a novel de novo PUF60 variant causing Verheij syndrome in a fetus. Gene 2024; 897:148092. [PMID: 38110042 DOI: 10.1016/j.gene.2023.148092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Verheij syndrome (VRJS) is a craniofacial spliceosomopathy with a wide phenotypic spectrum. Haploinsufficiency of the poly-uridine binding splicing factor 60 gene (PUF60) and its loss-of-function (LOF) variants are involved in VRJS. We evaluated a human fetus with congenital heart defects and preaxial polydactyly. Clinical data were obtained from the medical record. Whole-exome sequencing (WES) was used to explore the potential genetic etiology, and the detected variant verified using Sanger sequencing. Functional studies were performed to validate the pathogenic effects of the variant. Using trio-WES, we identified a novel PUF60 variant (NM_078480.2; c.1678 T > A, p.*560Argext*204) in the pedigree. Bioinformatic analyses revealed that the variant is potentially pathogenic, and functional studies indicated that it leads to degradation of the elongated protein and subsequently PUF60 LOF, producing some VRJS phenotypes. These findings confirmed the pathogenicity of the variant. This study implicates PUF60 LOF in the etiopathogenesis of VRJS. It not only expands the PUF60 variant spectrum, and also provides a basis for genetic counseling and the diagnosis of VRJS. Although trio-WES is a well-established approach for identifying the genetic etiology of rare multisystemic conditions, functional studies could aid in verifying the pathogenicity of novel variants.
Collapse
Affiliation(s)
- Mingzhu Miao
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Jue Wang
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Chenyan Guo
- Department of Obstetrics, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Xiaotian Su
- Department of Bioinformatics, Berry Genomics Co., Ltd., Beijing, China
| | - Lizhou Sun
- Department of Obstetrics, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China.
| | - Shoulian Lu
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China.
| |
Collapse
|
3
|
Baum E, Huang W, Vincent-Delorme C, Brunelle P, Antebi A, Dafsari HS. Novel Genetic and Phenotypic Expansion in Ameliorated PUF60-Related Disorders. Int J Mol Sci 2024; 25:2053. [PMID: 38396730 PMCID: PMC10889399 DOI: 10.3390/ijms25042053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.
Collapse
Affiliation(s)
- Emily Baum
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Wenming Huang
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | | | - Perrine Brunelle
- Institut de Génétique Médicale, University of Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Pediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
4
|
Grimes H, Ansari M, Ashraf T, Cueto-González AM, Calder A, Day M, Fernandez Alvarez P, Foster A, Lahiri N, Repetto GM, Scurr I, Varghese V, Low KJ. PUF60-related developmental disorder: A case series and phenotypic analysis of 10 additional patients with monoallelic PUF60 variants. Am J Med Genet A 2023; 191:2610-2622. [PMID: 37303278 DOI: 10.1002/ajmg.a.63313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
PUF60-related developmental disorder (also referred to as Verheij syndrome), resulting from haploinsufficiency of PUF60, is associated with multiple congenital anomalies affecting a wide range of body systems. These anomalies include ophthalmic coloboma, and congenital anomalies of the heart, kidney, and musculoskeletal system. Behavioral and intellectual difficulties are also observed. While less common than other features associated with PUF60-related developmental disorder, for instance hearing impairment and short stature, identification of specific anomalies such as ophthalmic coloboma can aid with diagnostic identification given the limited spectrum of genes linked with this feature. We describe 10 patients with PUF60 gene variants, bringing the total number reported in the literature, to varying levels of details, to 56 patients. Patients were recruited both via locally based exome sequencing from international sites and from the DDD study in the United Kingdom. Eight of the variants reported were novel PUF60 variants. The addition of a further patient with a reported c449-457del variant to the existing literature highlights this as a recurrent variant. One variant was inherited from an affected parent. This is the first example in the literature of an inherited variant resulting in PUF60-related developmental disorder. Two patients (20%) were reported to have a renal anomaly consistent with 22% of cases in previously reported literature. Two patients received specialist endocrine treatment. More commonly observed were clinical features such as: cardiac anomalies (40%), ocular abnormalities (70%), intellectual disability (60%), and skeletal abnormalities (80%). Facial features did not demonstrate a recognizable gestalt. Of note, but remaining of unclear causality, we describe a single pediatric patient with pineoblastoma. We recommend that stature and pubertal progress should be monitored in PUF60-related developmental disorder with a low threshold for endocrine investigations as hormone therapy may be indicated. Our study reports an inherited case with PUF60-related developmental disorder which has important genetic counseling implications for families.
Collapse
Affiliation(s)
- H Grimes
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | - M Ansari
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - T Ashraf
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Anna Mª Cueto-González
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - A Calder
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - M Day
- Exeter Genetics Laboratory, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - P Fernandez Alvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - A Foster
- Department of Clinical Genetics, West Midlands Regional Genetics Centre, Birmingham, UK
| | - N Lahiri
- Department of Clinical Genetics, St Georges University Hospital NHS Foundation Trust, London, UK
- Department of Clinical and Molecular Science, St Georges University of London, London, UK
| | - G M Repetto
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - I Scurr
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | - V Varghese
- All Wales Medical Genomics Services, University Hospital of Wales, Cardiff, UK
| | - Karen J Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Fennell AP, Baxter AE, Berkovic SF, Ellaway CJ, Forwood C, Hildebrand MS, Kumble S, McKeown C, Mowat D, Poke G, Rajagopalan S, Regan BM, Scheffer IE, Stark Z, Stutterd CA, Tan TY, Wilkins EJ, Yeung A, Hunter MF. The diverse pleiotropic effects of spliceosomal protein PUF60: A case series of Verheij syndrome. Am J Med Genet A 2022; 188:3432-3447. [PMID: 36367278 DOI: 10.1002/ajmg.a.62950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 01/31/2023]
Abstract
Verheij syndrome (VRJS) is a rare craniofacial spliceosomopathy presenting with craniofacial dysmorphism, multiple congenital anomalies and variable neurodevelopmental delay. It is caused by single nucleotide variants (SNVs) in PUF60 or interstitial deletions of the 8q24.3 region. PUF60 encodes a splicing factor which forms part of the spliceosome. To date, 36 patients with a sole diagnosis of VRJS due to disease-causing PUF60 SNVs have been reported in peer-reviewed publications. Although the depth of their phenotyping has varied greatly, they exhibit marked phenotypic heterogeneity. We report 10 additional unrelated patients, including the first described patients of Khmer, Indian, and Vietnamese ethnicities, and the eldest patient to date, with 10 heterozygous PUF60 variants identified through exome sequencing, 8 previously unreported. All patients underwent deep phenotyping identifying variable dysmorphism, growth delay, neurodevelopmental delay, and multiple congenital anomalies, including several unique features. The eldest patient is the only reported individual with a germline variant and neither neurodevelopmental delay nor intellectual disability. In combining these detailed phenotypic data with that of previously reported patients (n = 46), we further refine the known frequencies of features associated with VRJS. These include neurodevelopmental delay/intellectual disability (98%), axial skeletal anomalies (74%), appendicular skeletal anomalies (73%), oral anomalies (68%), short stature (66%), cardiac anomalies (63%), brain malformations (48%), hearing loss (46%), microcephaly (41%), colobomata (38%), and other ocular anomalies (65%). This case series, incorporating three patients from previously unreported ethnic backgrounds, further delineates the broad pleiotropy and mutational spectrum of PUF60 pathogenic variants.
Collapse
Affiliation(s)
- Andrew Paul Fennell
- Monash Genetics, Monash Health, Melbourne, Australia.,Clinical Genetics Service, Austin Health, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Samuel Frank Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia
| | - Carolyn Jane Ellaway
- Paediatrics North, Sydney, Australia.,Genetic Metabolic Disorders Service, The Sydney Children's Hospital Network, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Caitlin Forwood
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Michael Stephen Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Smitha Kumble
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Colina McKeown
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | | | - Brigid M Regan
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia
| | - Ingrid Eileen Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chloe Alice Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Ella Jane Wilkins
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Matthew Frank Hunter
- Monash Genetics, Monash Health, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|