1
|
Mourad SA, El-Farahaty RM, Atwa MA, Yahia S, El-Gilany AH, Elzeiny AA, Elhennawy ES. Association between FTO gene polymorphism and obesity in down syndrome children. Eur J Pediatr 2024; 184:95. [PMID: 39706986 DOI: 10.1007/s00431-024-05909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Children with Down syndrome (DS) have a higher incidence of overweight and obesity compared to typically developing peers. The fat mass and obesity-associated gene (FTO) is one of the early identified genes linked to obesity in various populations. To date, the FTO rs17817449 gene polymorphism has not been investigated in overweight/obese-DS (ODS) individuals. The current study aimed to explore the potential association between the FTO rs17817449 gene polymorphism and obesity-related markers, and to evaluate the ability of this polymorphism in the prediction of overweight/obesity in DS children and adolescents. This case-control study included 100 DS children under the age of 18, classified into three groups according to BMI-percentile; 50 non-obese DS (NODS), 24 overweight DS, and 26 ODS. Genotyping of FTO gene rs17817449 polymorphism was performed using the restriction fragment length polymorphism (RFLP-PCR) method. Serum lipid and thyroid profiles were also assessed. The results revealed significant increase in the frequency of the FTO rs17817449 T allele among overweight /ODS children compared to NODS children (p=0.0099). Overweight/ODS children exhibited significantly higher frequencies of the FTO rs17817449 GT and TT genotypes compared to NODS children. CONCLUSION There is an association between FTO rs17817449 genetic variant and overweight/obesity among the studied DS groups. The FTO rs17817449 GT and TT genotypes, as well as TGs level, were identified as independent risk factors for predicting overweight and obesity in DS children. WHAT IS KNOWN • Overweight and obese-DS (ODS) children displayed higher BMI and atherogenic lipid profile than non-obese DS children (NODS). FTO gene polymorphism rs17817449 contributes to obesity development in general population, but there is conflicting information about the risk allele. WHAT IS NEW • FTO rs17817449 TT genotype and T allele were considered as independent risk factors for overweight and obesity development in DS children, so they could be used for obesity prediction in DS children.
Collapse
Affiliation(s)
- Shereen A Mourad
- Department of Clinical Pathology Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reham M El-Farahaty
- Department of Clinical Pathology Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A Atwa
- Department of Clinical Pathology Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sohier Yahia
- Department of Pediatrics Genetics Unit Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdel-Hady El-Gilany
- Public Health Department Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed A Elzeiny
- Department of Clinical Pathology Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman S Elhennawy
- Department of Clinical Pathology Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Lecturer in Department of Clinical Pathology Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Mlodzik-Czyzewska MA, Szwengiel A, Chmurzynska A. Betaine and B 12 Intake, Glutathione Concentration, and MTHFR, PEMT, and MTHFD1 Genotypes Are Associated with Diabetes-Related Parameters in Polish Adults. J Nutr 2024:S0022-3166(24)01113-1. [PMID: 39442756 DOI: 10.1016/j.tjnut.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND There is a growing body of evidence on associations between one-carbon metabolism (OCM) and diabetes-related parameters. For this reason, we aimed to examine the associations of plasma choline, betaine, trimethylamine N-oxide (TMAO), glutathione (GSH), serum folate, vitamin B12, dihydrofolate reductase (rs70991108) genotype, methylenetetrahydrofolate reductase (MTHFR) (rs180113) genotype, methylenetetrahydrofolate dehydrogenase (MTHFD1) (rs2236225) genotype, and phosphatidylethanolamine N-methyltransferase (rs7946 and rs12325817) genotype with fasting glucose level, insulin level, and diabetes-related indices. METHODS The study group consisted of 421 Polish adults aged 20-40 y. Food intake was assessed using a 3-d food diary. Plasma concentrations of choline, betaine, and TMAO were determined by ultra-high-performance liquid chromatography-electrospray ionization mass spectrometry. The total plasma GSH level was measured by high-performance liquid chromatography. Insulin, folate, and vitamin B12 concentrations were estimated by enzyme-linked immunosorbent assay method. Genotyping was performed with TaqMan probes. RESULTS GSH level was negatively associated with insulin (β = -0.11, P < 0.05) and gamma-glutamyl transferase (GGTP) (β = -0.12, P < 0.05), and positively associated with fasting glucose (β = 0.11, P < 0.05). Betaine intake was negatively associated with serum insulin concentration (β = -0.13, P < 0.05) and HOMA-IR (β = -0.12, P < 0.05). Choline intake was negatively associated with insulin (β = -0.17, P < 0.01). Serum folate level was negatively associated with GGTP (β = -0.11; P < 0.05). The methylenetetrahydrofolate reductase (MTHFR) CC genotype was associated with higher serum insulin levels (β = 0.15; P < 0.01) and higher HOMA-IR (β = 0.15, P < 0.01), whereas the MTHFD1 AA genotype was negatively associated with Quantitative Insulin Sensitivity Check Index (β = -0.11, P < 0.05). CONCLUSIONS Our findings suggest that higher GSHL and higher intake of betaine, B12, and choline, as well as the TT genotype of MTHFR and the AA genotype of MTHFD1, are associated with lower diabetes-related parameters among adults.
Collapse
Affiliation(s)
| | - Artur Szwengiel
- Department of Fermentation and Biosynthesis, Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
3
|
Amine Ikhanjal M, Ali Elouarid M, Zouine C, El Alami H, Errafii K, Ghazal H, Alidrissi N, Bakkali F, Benmoussa A, Hamdi S. FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: A Meta-Analysis. Gene 2023; 887:147791. [PMID: 37696421 DOI: 10.1016/j.gene.2023.147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS There is tremendous increase in type 2 diabetes mellitus (T2DM) worldwide. The impact of FTO gene polymorphisms on the risk of T2DM is not yet clear because of the controversial results of studies. This meta-analysis aimed to better clarify the association between three FTO gene polymorphisms SNPs (rs9939609, rs8050136 and rs17817449) and T2DM in a larger combined population worldwide. MATERIAL AND METHODS A comprehensive search on the PubMed, Science Direct, and Web of Science databases was conducted to identify investigations in relationship between different FTO gene polymorphisms (rs9939609, rs8050136 and rs17817449) and T2DM globally. Published papers from January 2007 to May 2023 were collected. Inclusion criteria are limited to human case-control studies published in English and peer-reviewed, which provided data on the genotype distributions of FTO gene polymorphisms and T2DM risk. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to express the results of the meta-analysis. Potential sources of bias and heterogeneity using Egger's regression analysis were also assessed. RESULTS Of 234695 identified articles, forty-eight studies were selected including 36,051 patients with T2DM and 51,266 control subjects. Overall, we found a significant increased risk of T2DM susceptibility and rs9939609 FTO gene polymorphism in the Allele contrast (A vs. T: OR = 1,30, 95% CI = 1.14; 1.48, P < 0,05, I2 = 0,94), Recessive model (AA vs. AT + TT: OR = 1,54, 95% CI = 1.19; 2.00, P < 0,05, I2 = 0,94), Dominant model (AA + AT vs. TT: OR = 1,26, 95% CI = 1.10; 1.45, P < 0,05, I2 = 0,89), homozygote model (AA vs. TT: OR = 1,60, 95% CI = 1.26; 2.03, P < 0,05, I2 = 0,90), and heterozygote model (AA vs. AT: OR = 1,43, 95% CI = 1.09; 1.88, P = 0,008, I2 = 0,93). we also found a significantly increased risk of T2DM susceptibility and rs8050136 FTO gene polymorphism under all models. For rs17817449 we did not find any association between with T2DM. CONCLUSION The present meta-analysis confirms that rs9939609 and rs8050136 in the FTO gene are significantly associated with T2DM, while rs17817449 does not show any association.
Collapse
Affiliation(s)
- Mohammed Amine Ikhanjal
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Mohammed Ali Elouarid
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Chaimae Zouine
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Houda El Alami
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco.
| | - Khaoula Errafii
- African Genomic Center (AGC), University Mohamed VI Polytechnic, Bengurir, Morocco.
| | - Hassan Ghazal
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco;s Royal Institute for Management Training, Rabat, Morocco.
| | - Najib Alidrissi
- Department of Surgery and Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco; Hospital Cheikh Khalifa, Casablanca, Morocco.
| | - Fadil Bakkali
- University of Mohamed VI of Sciences and Health, Morocco; Laboratory of toxicology, toxicogenomics and ecotoxicology, University of Mohamed VI of Sciences and Health, Morocco.
| | - Adnane Benmoussa
- University of Mohamed VI of Sciences and Health, Morocco; Laboratory of toxicology, toxicogenomics and ecotoxicology, University of Mohamed VI of Sciences and Health, Morocco.
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco.
| |
Collapse
|
4
|
Hernandez I, Hayward JJ, Brockman JA, White ME, Mouttham L, Wilcox EA, Garrison S, Castelhano MG, Loftus JP, Gomes FE, Balkman C, Brooks MB, Fiani N, Forman M, Kern T, Kornreich B, Ledbetter EC, Peralta S, Struble AM, Caligiuri L, Corey E, Lin L, Jordan J, Sack D, Boyko AR, Lyons LA, Todhunter RJ. Complex Feline Disease Mapping Using a Dense Genotyping Array. Front Vet Sci 2022; 9:862414. [PMID: 35782544 PMCID: PMC9244801 DOI: 10.3389/fvets.2022.862414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The current feline genotyping array of 63 k single nucleotide polymorphisms has proven its utility for mapping within breeds, and its use has led to the identification of variants associated with Mendelian traits in purebred cats. However, compared to single gene disorders, association studies of complex diseases, especially with the inclusion of random bred cats with relatively low linkage disequilibrium, require a denser genotyping array and an increased sample size to provide statistically significant associations. Here, we undertook a multi-breed study of 1,122 cats, most of which were admitted and phenotyped for nine common complex feline diseases at the Cornell University Hospital for Animals. Using a proprietary 340 k single nucleotide polymorphism mapping array, we identified significant genome-wide associations with hyperthyroidism, diabetes mellitus, and eosinophilic keratoconjunctivitis. These results provide genomic locations for variant discovery and candidate gene screening for these important complex feline diseases, which are relevant not only to feline health, but also to the development of disease models for comparative studies.
Collapse
Affiliation(s)
- Isabel Hernandez
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- *Correspondence: Jessica J. Hayward
| | - Jeff A. Brockman
- Pet Nutrition Center, Hill's Pet Nutrition, Topeka, KS, United States
| | - Michelle E. White
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
- Vertebrate Genomics Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Lara Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Elizabeth A. Wilcox
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Susan Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marta G. Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - John P. Loftus
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Filipe Espinheira Gomes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Cheryl Balkman
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marnin Forman
- Cornell University Veterinary Specialists, Stamford, CT, United States
| | - Tom Kern
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Bruce Kornreich
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Eric C. Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Angela M. Struble
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lisa Caligiuri
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Elizabeth Corey
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lin Lin
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Julie Jordan
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Danny Sack
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Adam R. Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rory J. Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Genetic polymorphisms associated with obesity in the Arab world: a systematic review. Int J Obes (Lond) 2021; 45:1899-1913. [PMID: 34131278 PMCID: PMC8380539 DOI: 10.1038/s41366-021-00867-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Obesity, one of the most common chronic health conditions worldwide, is a multifactorial disease caused by complex genetic and environmental interactions. Several association studies have revealed a considerable number of candidate loci for obesity; however, the genotype-phenotype correlations remain unclear. To date, no comprehensive systematic review has been conducted to investigate the genetic risk factors for obesity among Arabs. OBJECTIVES This study aimed to systematically review the genetic polymorphisms that are significantly associated with obesity in Arabs. METHODS We searched four literature databases (PubMed, Science Direct, Scopus, and Google Scholar) from inception until May 2020 to obtain all reported genetic data related to obesity in Arab populations. Quality assessment and data extraction were performed individually by three investigators. RESULTS In total, 59 studies comprising a total of 15,488 cases and 9,760 controls were included in the systematic review. A total of 76 variants located within or near 49 genes were reported to be significantly associated with obesity. Among the 76 variants, two were described as unique to Arabs, as they have not been previously reported in other populations, and 19 were reported to be distinctively associated with obesity in Arabs but not in non-Arab populations. CONCLUSIONS There appears to be a unique genetic and clinical susceptibility profile of obesity in Arab patients.
Collapse
|
6
|
Abuhendi N, Qush A, Naji F, Abunada H, Al Buainain R, Shi Z, Zayed H. Genetic polymorphisms associated with type 2 diabetes in the Arab world: A systematic review and meta-analysis. Diabetes Res Clin Pract 2019; 151:198-208. [PMID: 30954515 DOI: 10.1016/j.diabres.2019.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
AIMS T2DM reach epidemic levels in the Arab countries. In this study, we aimed to perform a systematic review and meta-analysis to underline the susceptibility genetic profile of Arab patients with T2DM that result from SNPs. METHODS We searched four literature databases (PubMed, Scopus, Science Direct and Web of Science) through January 2019. We included all SNPs in candidate genes with an OR > 1 that were associated with T2DM among Arab patients with T2DM. Statistical programs such as software Review Manager (Version 5.02) and STATA (Version 15.1) were used. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with a random effects model or a fixed effect model depending on the heterogeneity among studies. I2 statistics and Egger's tests were performed to assess heterogeneity and publication bias. RESULTS Out of 2245 studies, 47 were used for meta-analysis. We captured 31,307 cases and 26,464 controls in which we collected 71 SNPs in 32 genes. A pooled meta-analysis demonstrated 24-69% increase in T2DM risk. Among the 57 SNPs (in 32 genes) that were not included in the meta-analysis, the OR for diabetes ranged from 1.02 to 5.10, with a median of 1.38 (interquartile range 1.33-2.09). Ten studies examined the association between the TCF7L2 polymorphism rs7903146 and T2DM, leading to an aggregated OR of 1.34 (95%CI 1.27-1.41). CONCLUSION The genetic profile that confer susceptibility to T2DM in Arab patients is diverse. This study may serve as a platform for designing a gene panel for testing the susceptibility to T2DM.
Collapse
Affiliation(s)
- Najat Abuhendi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Fozieh Naji
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hanan Abunada
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Reeham Al Buainain
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Zumin Shi
- Department of Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|