1
|
Giselle Moreira M, Guimarães Oliveira AG, Ul Haq I, Pinheiro de Oliveira TF, Alonazi WB, Fonseca Júnior AA, Nobre Junior VA, dos Santos SG. Droplet Digital PCR for Acinetobacter baumannii Diagnosis in Bronchoalveolar Lavage Samples from Patients with Ventilator-Associated Pneumonia. Antibiotics (Basel) 2024; 13:878. [PMID: 39335051 PMCID: PMC11429060 DOI: 10.3390/antibiotics13090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Advanced diagnostic technologies have made accurate and precise diagnosis of pathogens easy. Herein, we present a new diagnostic method, droplet digital PCR (ddPCR), to detect and quantify Acinetobacter baumannii in mini bronchoalveolar lavage (mini-BAL) samples. A. baumannii causes ventilator-associated pneumonia (VAP), a severe healthcare infection affecting patients' lungs. VAP carries a high risk of morbidity and mortality, making its timely diagnosis crucial for prompt and effective management. Methodology. The assay performance was evaluated by comparing colonization data, quantitative culture results, and different generations of PCR (traditional PCR and Real-Time PCR-qPCR Taqman® and SYBR® Green). The ddPCR and qPCR Taqman® prove to be more sensitive than other molecular techniques. Reasonable analytical specificity was obtained with ddPCR, qPCR TaqMan®, and conventional PCR. However, qPCR SYBR® Green technology presented a low specificity, making the results questionable in clinical samples. DdPCR detected/quantified A. baumanni in more clinical samples than other methods (38.64% of the total samples). This emerging ddPCR technology offers promising advantages such as detection by more patients and direct quantification of pathogens without calibration curves.
Collapse
Affiliation(s)
- Mirna Giselle Moreira
- Departament of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil; (M.G.M.); (A.G.G.O.)
| | - Anna Gabriella Guimarães Oliveira
- Departament of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil; (M.G.M.); (A.G.G.O.)
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
- Joint Doctoral School, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Tatiana Flávia Pinheiro de Oliveira
- Federal Agricultural Defense Laboratory of Minas Gerais, Av. Rômulo Joviano s/n, Centro, Pedro Leopoldo 33600-000, Minas Gerais, Brazil; (T.F.P.d.O.); (A.A.F.J.)
| | - Wadi B. Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Antônio Augusto Fonseca Júnior
- Federal Agricultural Defense Laboratory of Minas Gerais, Av. Rômulo Joviano s/n, Centro, Pedro Leopoldo 33600-000, Minas Gerais, Brazil; (T.F.P.d.O.); (A.A.F.J.)
| | - Vandack Alencar Nobre Junior
- Interdisciplinary Center for Research in Intensive Care Medicine (NIIMI), Faculty of Medicine, Federal University of Minas Gerais, Av. Prof. Alfredo Balena 110, Santa Efigênia, Belo Horizonte 30130-100, Minas Gerais, Brazil;
| | - Simone Gonçalves dos Santos
- Departament of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil; (M.G.M.); (A.G.G.O.)
| |
Collapse
|
2
|
Accuracy of Molecular Amplification Assays for Diagnosis of Staphylococcal Pneumonia: a Systematic Review and Meta-analysis. J Clin Microbiol 2021; 59:e0300320. [PMID: 33568465 DOI: 10.1128/jcm.03003-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rapid and accurate identification of staphylococcal pneumonia is crucial for effective antimicrobial stewardship. We performed a meta-analysis to evaluate the diagnostic value of nucleic acid amplification tests (NAAT) from lower respiratory tract (LRT) samples from suspected pneumonia patients to avoid superfluous empirical methicillin-resistant Staphylococcus aureus (MRSA) treatment. PubMed, Scopus, Embase, Web of Science, and the Cochrane Library Database were searched from inception to 2 September 2020. Data analysis was carried out using a bivariate random-effects model to estimate pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR). Of 1,808 citations, 24 publications comprising 32 data sets met our inclusion criteria. Twenty-two studies (n = 4,630) assessed the accuracy of the NAAT for methicillin-sensitive S. aureus (MSSA) detection, while 10 studies (n = 2,996) demonstrated the accuracy of the NAAT for MRSA detection. The pooled NAAT sensitivity and specificity (with 95% confidence interval [CI]) for all MSSA detection were higher (sensitivity of 0.91 [95% CI, 0.89 to 0.94], specificity of 0.94 [95% CI, 0.94 to 0.95]) than those of MRSA (sensitivity of 0.75 [95% CI, 0.69 to 0.80], specificity of 0.88 [95% CI, 0.86 to 0.89]) in lower respiratory tract (LRT) samples. NAAT pooled sensitivities differed marginally among different LRT samples, including sputum, endotracheal aspirate (ETA), and bronchoalveolar lavage (BAL) fluid. Noticeably, NAAT pooled specificity against microbiological culture was consistently ≥88% across various types of LRT samples. A meta-regression and subgroup analysis of study design, sample condition, and patient selection method could not explain the heterogeneity (P > 0.05) in the diagnostic efficiency. This meta-analysis has demonstrated that the NAAT can be applied as the preferred initial test for timely diagnosis of staphylococcal pneumonia in LRT samples for successful antimicrobial therapy.
Collapse
|