Shawki HA, Abo-hashem EM, Youssef MM, Shahin M, Elzehery R. PPARɣ2, aldose reductase, and TCF7L2 gene polymorphisms: relation to diabetes mellitus.
J Diabetes Metab Disord 2022;
21:241-250. [PMID:
35673413 PMCID:
PMC9167404 DOI:
10.1007/s40200-021-00963-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 01/05/2023]
Abstract
Purpose
Diabetes mellitus (DM) is a growing global health concern. Genetic factors play a pivotal role in the development of diabetes. Therefore, the present work aimed to study the relation between peroxisome proliferator-activate receptors (PPARɣ2) (rs3856806), aldose reductase (AR) (rs759853), transcription factor 7 like 2 (TCF7L2) (rs7903146) gene polymorphism with diabetes in the Egyptian population.
Methods
The study included 260 diabetics and 120 healthy subjects. Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism.
Results
Regression analysis revealed that PPARɣ2 TT, TCF7L2 TT were suggested to be independent risk predictors for T1DM and TCF7L2 TC, CC genotype were suggested to be independent protective factors against T1DM development. On the other hand, PPARɣ2 TT, AR TT genotypes were suggested to be independent risk predictors for T2DM susceptibility, and PPARɣ2 CT genotypes were suggested to be independent protective factors against T2DM development.
Conclusion
The present study revealed that PPARγ2 (rs3856806), TCF7L2 (rs7903146) and AR (rs759853) gene polymorphism may play an important role in the susceptibility of diabetes. Therefore, these polymorphisms may have a prognostic value for diabetes in the Egyptian population. Further work is required to confirm the role of these polymorphisms in diabetes.
Collapse