1
|
Schültke E. Flying rats and microbeam paths crossing: the beauty of international interdisciplinary science. Int J Radiat Biol 2022; 98:466-473. [PMID: 34995153 DOI: 10.1080/09553002.2021.2024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Microbeam radiotherapy (MRT) is a still experimental radiotherapy approach. Two combined parameters contribute to an excellent normal tissue protection and an improved control of malignant tumors in small animal models, compared to conventional radiotherapy: dose deposition at a high dose rate and spatial fractionation at the micrometre level. The international microbeam research community expects to see clinical MRT trials within the next ten years.Physics-associated research is still widely regarded as a male domain. Thus, the question was asked whether this is reflected in the scientific contributions to the field of microbeam radiotherapy. METHOD A literature search was conducted using Pubmed, Semantic Scholar and other sources to look specifically for female contributors to the field of microbeam radiotherapy development. CONCLUSION The original idea for MRT was patented in 1994 by an all-male research team. In approximately 50% of all publications related to microbeam radiotherapy, however, either the first or the senior author is a woman. The contribution of those women who have been driving the development of both technical and biomedical aspects of MRT in the last two decades is highlighted.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Martínez-Rovira I, González W, Brons S, Prezado Y. Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation. Med Phys 2017; 44:4223-4229. [PMID: 28556241 DOI: 10.1002/mp.12383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/03/2017] [Accepted: 05/21/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To perform dosimetric characterization of a minibeam collimator in both carbon and oxygen ion beams to guide optimal setup geometry and irradiation for future radiobiological studies. METHODS Carbon and oxygen minibeams were generated using a prototype tungsten multislit collimator presenting line apertures 700 μm wide, which are spaced 3500 μm centre-to-centre distance apart. Several radiation beam spots generated the desired field size of 15 × 15 mm2 and production of a 50 mm long spread out Bragg peak (SOBP) centered at 80 mm depth in water. Dose evaluations were performed with two different detectors: a PTW microDiamond® single crystal diamond detector and radiochromic films (EBT3). Peak-to-valley dose ratio (PVDR) values, output factors (OF), penumbras, and full width at half maximum (FWHM) were measured. RESULTS Measured lateral dose profiles exhibited spatial fractionation of dose at depth in a water phantom in the expected form of peaks and valleys for both carbon and oxygen radiation fields. The diamond detector and radiochromic film provided measurements of PVDR in good agreement. PVDR values at shallow depth were about 60 and decreased to about 10 at 80 mm depth in water. OF in the center of the SOBP was about 0.4; this value is larger than the corresponding one in proton minibeam radiation therapy measured using a comparable collimator due to a reduced lateral scattering for carbon and oxygen minibeams. CONCLUSIONS Carbon and oxygen minibeams may be produced by a mechanical collimator. PVDR values and output factors measured in this first study of these minibeam radiation types indicate there is potential for their therapeutic use. Optimization of minibeam collimator design and the number and size of focal spots for irradiation are advocated to improve PDVR values and dose distributions for each specific applied use.
Collapse
Affiliation(s)
- Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France.,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Avinguda de l'Eix Central, Edicifi C, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Wilfredo González
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Clinic, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| |
Collapse
|
3
|
Peucelle C, Nauraye C, Patriarca A, Hierso E, Fournier-Bidoz N, Martínez-Rovira I, Prezado Y. Proton minibeam radiation therapy: Experimental dosimetry evaluation. Med Phys 2016; 42:7108-13. [PMID: 26632064 DOI: 10.1118/1.4935868] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. METHODS Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. RESULTS A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. CONCLUSIONS pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth, the worst scenario), while a spatial fractionation of the dose is retained in the normal tissues in the beam path, potentially leading to a gain in tissue sparing. This is the first complete experimental implementation of this promising technique. Biological experiments are needed in order to confirm the clinical potential of pMBRT.
Collapse
Affiliation(s)
- C Peucelle
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - C Nauraye
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - A Patriarca
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - E Hierso
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - N Fournier-Bidoz
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - I Martínez-Rovira
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| |
Collapse
|
4
|
Martínez-Rovira I, Fois G, Prezado Y. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med Phys 2015; 42:685-93. [PMID: 25652482 DOI: 10.1118/1.4905042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Spatial fractionation of the dose has proven to be a promising approach to increase the tolerance of healthy tissue, which is the main limitation of radiotherapy. A good example of that is GRID therapy, which has been successfully used in the management of large tumors with low toxicity. The aim of this work is to explore new avenues using nonconventional sources: GRID therapy by using kilovoltage (synchrotron) x-rays, the use of very high-energy electrons, and proton GRID therapy. They share in common the use of the smallest possible grid sizes in order to exploit the dose-volume effects. METHODS Monte Carlo simulations (penelope/peneasy and geant4/GATE codes) were used as a method to study dose distributions resulting from irradiations in different configurations of the three proposed techniques. As figure of merit, percentage (peak and valley) depth dose curves, penumbras, and central peak-to-valley dose ratios (PVDR) were evaluated. As shown in previous biological experiments, high PVDR values are requested for healthy tissue sparing. A superior tumor control may benefit from a lower PVDR. RESULTS High PVDR values were obtained in the healthy tissue for the three cases studied. When low energy photons are used, the treatment of deep-seated tumors can still be performed with submillimetric grid sizes. Superior PVDR values were reached with the other two approaches in the first centimeters along the beam path. The use of protons has the advantage of delivering a uniform dose distribution in the tumor, while healthy tissue benefits from the spatial fractionation of the dose. In the three evaluated techniques, there is a net reduction in penumbra with respect to radiosurgery. CONCLUSIONS The high PVDR values in the healthy tissue and the use of small grid sizes in the three presented approaches might constitute a promising alternative to treat tumors with such spatially fractionated radiotherapy techniques. The dosimetric results presented here support the interest of performing radiobiology experiments in order to evaluate these new avenues.
Collapse
Affiliation(s)
- I Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| | - G Fois
- Dipartimento di Fisica, Università degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042, Italy
| | - Y Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| |
Collapse
|
5
|
Park JC, Li JG, Arhjoul L, Yan G, Lu B, Fan Q, Liu C. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT. Med Phys 2015; 42:1836-50. [PMID: 25832074 DOI: 10.1118/1.4914858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. METHODS The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. RESULTS Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc therapy fields (∼90 control points) with a 3D grid size of 2.0 × 2.0 × 2.0 mm(3), dose was computed within 3-5 and 10-15 s timeframe, respectively. CONCLUSIONS The authors have developed an efficient adaptive beamlet-based pencil beam dose calculation algorithm. The fast computation nature along with GPU compatibility has shown better performance than conventional FSPB. This enables the implementation of AB-FSPB in the clinical environment for independent volumetric dose verification.
Collapse
Affiliation(s)
- Justin C Park
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Jonathan G Li
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Lahcen Arhjoul
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Guanghua Yan
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Bo Lu
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Qiyong Fan
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610-0385
| |
Collapse
|
6
|
Fontanella AN, Boss MK, Hadsell M, Zhang J, Schroeder T, Berman KG, Dewhirst MW, Chang S, Palmer GM. Effects of high-dose microbeam irradiation on tumor microvascular function and angiogenesis. Radiat Res 2015; 183:147-58. [PMID: 25574586 DOI: 10.1667/rr13712.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbeam radiation therapy (MRT) is a form of cancer treatment in which a single large dose of radiation is spatially fractionated in-line or grid-like patterns. Preclinical studies have demonstrated that MRT is capable of eliciting high levels of tumor response while sparing normal tissue that is exposed to the same radiation field. Since a large fraction of the MRT-treated tumor is in the dose valley region that is not directly irradiated, tumor response may be driven by radiation bystander effects, which in turn elicit a microvascular response. Differential alterations in hemodynamics between the tumor and normal tissue may explain the therapeutic advantages of MRT. Direct observation of these dynamic responses presents a challenge for conventional ex vivo analysis. Furthermore, knowledge gleaned from in vitro studies of radiation bystander response has not been widely incorporated into in vivo models of tumor radiotherapy, and the biological contribution of the bystander effect within the tumor microenvironment is unknown. In this study, we employed noninvasive, serial observations of the tumor microenvironment to address the question of how tumor vasculature and HIF-1 expression are affected by microbeam radiotherapy. Tumors (approximately 4 mm in diameter) grown in a dorsal window chamber were irradiated in a single fraction using either a single, microplanar beam (300 micron wide swath) or a wide-field setup (whole-window chamber) to a total dose of 50 Gy. The tumors were optically observed daily for seven days postirradiation. Microvascular changes in the tumor and surrounding normal tissue differed greatly between the wide-field and microbeam treatments. We present evidence that these changes may be due to dissimilar spatial and temporal patterns of HIF-1 expression induced through radiation bystander effects.
Collapse
Affiliation(s)
- Andrew N Fontanella
- a Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Martínez-Rovira I, Prezado Y. Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study. Med Phys 2014; 41:061706. [DOI: 10.1118/1.4873693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|