1
|
Muir B, Davis S, Dhanesar S, Hillman Y, Iakovenko V, Kim GGY, Alves VGL, Lei Y, Lowenstein J, Renaud J, Sarfehnia A, Siebers J, Tantôt L. AAPM WGTG51 Report 385: Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy electron beams. Med Phys 2024; 51:5840-5857. [PMID: 38980220 DOI: 10.1002/mp.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An Addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water is presented for electron beams with energies between 4 MeV and 22 MeV (1.70 cm ≤ R 50 ≤ 8.70 cm $1.70\nobreakspace {\rm cm} \le R_{\text{50}} \le 8.70\nobreakspace {\rm cm}$ ). This updated formalism allows simplified calibration procedures, including the use of calibrated cylindrical ionization chambers in all electron beams without the use of a gradient correction. Newk Q $k_{Q}$ data are provided for electron beams based on Monte Carlo simulations. Implementation guidance is provided. Components of the uncertainty budget in determining absorbed dose to water at the reference depth are discussed. Specifications for a reference-class chamber in electron beams include chamber stability, settling, ion recombination behavior, and polarity dependence. Progress in electron beam reference dosimetry is reviewed. Although this report introduces some major changes (e.g., gradient corrections are implicitly included in the electron beam quality conversion factors), they serve to simplify the calibration procedure. Results for absorbed dose per linac monitor unit are expected to be up to approximately 2 % higher using this Addendum compared to using the original TG-51 protocol.
Collapse
Affiliation(s)
- Bryan Muir
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Stephen Davis
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Sandeep Dhanesar
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texa, USA
| | - Yair Hillman
- Department of Radiation Oncology, Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Grace Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, California, USA
| | | | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jessica Lowenstein
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texa, USA
| | - James Renaud
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jeffrey Siebers
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Laurent Tantôt
- Département de radio-oncologie, CIUSSS de l'Est-de-l'Île-de-Montréal - Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Mahfirotin DA, Ferliano B, Handika AD, Asril YS, Fadli M, Ryangga D, Nelly N, Kurniawan E, Wibowo WE, Yadav P, Pawiro SA. A multicenter study of modified electron beam output calibration. J Appl Clin Med Phys 2024; 25:e14232. [PMID: 38088260 PMCID: PMC10795448 DOI: 10.1002/acm2.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE This study aims to assess the accuracy of a modified electron beam calibration based on the IAEA TRS-398 and AAPM-TG-51 in multicenter radiotherapy. METHODS This study was performed using the Elekta and Varian Linear Accelerator electron beams with energies of 4-22 MeV under reference conditions using cylindrical (PTW 30013, IBA FC65-G, and IBA FC65-P) and parallel-plate (PTW 34045, PTW 34001, and IBA PPC-40) chambers. The modified calibration used a cylindrical chamber and an updatedk ' Q $k{^{\prime}}_Q$ based on Monte Carlo calculations, whereas TRS-398 and TG-51 used cylindrical and parallel-plate chambers for reference dosimetry. The dose ratio of the modified calibration procedure, TRS-398 and TG-51 were obtained by comparing the dose at the maximum depth of the modified calibration to TRS-398 and TG-51. RESULTS The study found that all cylindrical chambers' beam quality conversion factors determined with the modified calibration( k ' Q ) $( {{{k^{\prime}}}_Q} )$ to the TRS-398 and TG-51 vary from 0.994 to 1.003 and 1.000 to 1.010, respectively. The dose ratio of modified/TRS-398cyl and modified/TRS-398parallel-plate, the variation ranges were 0.980-1.014 and 0.981-1.019, while for the counterpart modified/TG-51cyl was found varying between 0.991 and 1.017 and the ratio of modified/TG-51parallel-plate varied in the range of 0.981-1.019. CONCLUSION This multi-institutional study analyzed a modified calibration procedure utilizing new data for electron beam calibrations at multiple institutions and evaluated existing calibration protocols. Based on observed variations, the current calibration protocols should be updated with detailed metrics on the stability of linac components.
Collapse
Affiliation(s)
- Dwi Aprilia Mahfirotin
- Department of PhysicsFaculty of Mathematics and Natural SciencesUniversitas Indonesia, DepokWest JavaIndonesia
- Department of Radiation OncologyMitra Keluarga Bekasi Timur Hospital, BekasiWest JavaIndonesia
| | - Brian Ferliano
- Department of Radiation OncologyGading Pluit HospitalJakartaIndonesia
| | - Andrian Dede Handika
- Department of Radiation OncologyPersahabatan Central General HospitalJakartaIndonesia
| | - Yosi Sudarsi Asril
- Department of Radiation OncologyMayapada Hospital Jakarta SelatanJakartaIndonesia
| | - Muhamad Fadli
- Department of Radiation OncologyMRCCC Siloam Hospital SemanggiJakartaIndonesia
| | - Dea Ryangga
- Department of Radiation OncologyPasar Minggu Regional HospitalJakartaIndonesia
| | - Nelly Nelly
- Department of Radiation OncologySiloam Hospital TB SimatupangJakartaIndonesia
| | - Eddy Kurniawan
- Department of Radiation OncologyTzu Chi HospitalJakartaIndonesia
| | - Wahyu Edy Wibowo
- Department of Radiation OncologyDr. Cipto Mangunkusumo National General Hospital CentralFaculty of MedicineUniversitas IndonesiaJakartaIndonesia
| | - Poonam Yadav
- Department of Radiation OncologyNorthwestern Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Supriyanto Ardjo Pawiro
- Department of PhysicsFaculty of Mathematics and Natural SciencesUniversitas Indonesia, DepokWest JavaIndonesia
| |
Collapse
|
3
|
Ding GX. Stopping-power ratios for electron beams used in total skin electron therapy. Med Phys 2021; 48:5472-5478. [PMID: 34287969 DOI: 10.1002/mp.15121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The electron beams for total skin electron therapy (TSET) are often degraded by a scatter plate in addition to extended distances. For electron dosimetry, both the AAPM TG-51 and IAEA TRS-398 recommend the use of two formulas developed by Burns et al [Med. Phys. 23, 489-501 (1996)] to estimate the water-to-air stopping-power ratios (SPRs). Both formulas are based on a fit to SPRs calculated for standard electron beams. This study aims to find: (1) if the formulas are applicable to beams used in TSET and (2) the impact of the ICRU report 90 recommendations on the SPRs for these beams. METHODS The EGSnrc Monte Carlo code system is used to generate 6 MeV high dose rate total skin electron (HDTSe) beams used in TSET. The simulated beams are used to calculate dose distributions and SPRs as a function of depth in a water phantom. The fitted SPRs using the empirical formulas are compared with MC-calculated SPRs. RESULTS The electron beam quality specifier, the depth in water at which the absorbed dose falls to 50% of its maximum value, R50 , decreases approximately 1 mm for each additional 100-cm extended distance ranging from 2.24 cm at SSD = 100 to 1.72 cm at SSD = 700 cm. For beams passing through a scatter plate, R50 is 1.76 cm (1.14) at SSD = 300 and 1.48 cm (0.85 cm) at SSD = 600 cm with an Acrylic plate thickness of 3 mm (9 mm), respectively. The discrepancy between fitted and MC-calculated SPRs at dref as a function of R50 is <0.8%, and in many cases <0.4%. The difference between fitted and MC-calculated SPRs as a function of depth and R50 is within 1% at depths <0.8R50 for beams with R50 ≥ 1.14 cm. The ICRU-90 recommendations decrease SPRs by 0.3%-0.4% compared to the use of data recommended in ICRU-37. CONCLUSION The formulas used by the major protocols are accurate enough for clinical beams used in TSET and the error caused using the formulas is <1% to estimate SPRs as a function of depth and R50 for depths <0.8R50 for beams used in TSET with R50 ≥ 1.14 cm. The impact of the ICRU-90 recommendations shows a decrease of SPRs by a fraction of a percent for beams used in TSET.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Sempau J, Kazantsev P, Izewska J, Brualla L. Monte Carlo verification of the holder correction factors for the radiophotoluminescent glass dosimeter used by the IAEA in international dosimetry audits. Phys Med 2021; 86:1-5. [PMID: 34044284 DOI: 10.1016/j.ejmp.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
The International Atomic Energy Agency (IAEA), jointly with the World Health Organization (WHO), has operated a postal dosimetry audit program for radiotherapy centers worldwide since 1969. In 2017 the IAEA introduced a new methodology based on radiophotoluminescent dosimetry (RPLD) for these audits. The detection system consists of a phosphate glass dosimeter inserted in a plastic capsule that is kept in measuring position with a PMMA holder during irradiation. Correction factors for this holder were obtained using experimental methods. In this work these methods are described and the resulting factors are verified by means of Monte Carlo simulation with the general-purpose code PENELOPE for a range of photon beam qualities relevant in radiotherapy. The study relies on a detailed geometrical representation of the experimental setup. Various photon beams were obtained from faithful modeling of the corresponding linacs. Monte Carlo simulation transport parameters are selected to ensure subpercent accuracy. The simulated correction factors fall in the interval 1.005-1.008 (±0.2%), with deviations with respect to experimental values not larger than 0.2(2)%. This study corroborates the validity of the holder correction factors currently used for the IAEA audits.
Collapse
Affiliation(s)
- J Sempau
- Universitat Politècnica de Catalunya, E-08028 Barcelona, Spain; Centros de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), E-28029 Madrid, Spain
| | - P Kazantsev
- International Atomic Energy Agency, A-1400 Vienna, Austria
| | - J Izewska
- International Atomic Energy Agency, A-1400 Vienna, Austria
| | - L Brualla
- West German Proton Therapy Centre WPE, D-45147 Essen, Germany; University of Duisburg-Essen, Faculty of Medicine, D-45147 Essen, Germany; University Hospital Essen, West German Cancer Center WTZ, D-45147 Essen, Germany.
| |
Collapse
|
5
|
Performance characteristics of some cylindrical ion chamber dosimeters in Megavoltage (MV) photon beam according to TRS-398 dosimetry protocol. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|