1
|
Bonfrate A, Ronga MG, Patriarca A, Heinrich S, De Marzi L. Monte Carlo modeling of a commercial machine and experimental setup for FLASH-minibeam irradiations with electrons. Med Phys 2024. [PMID: 39504384 DOI: 10.1002/mp.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Ultra-high dose rate (UHDR/FLASH) irradiations, along with particle minibeam therapy (PMBT) are both emerging as promising alternatives to current radiotherapy techniques thanks to their improved healthy tissue sparing and similar tumor control. PURPOSE Monte Carlo (MC) modeling of a commercial machine delivering 5-7 MeV electrons at UHDR. This model was used afterward to compare measurements against simulations for an experimental setup combining both FLASH and PMBT modalities. METHODS We modeled the main accelerator elements with TOPAS3.8/Geant4.10.07.p03, optimized the electron source parameters, and subsequently benchmarked this geometry against measurements. Minibeam experiments were performed by delivering 7 MeV electrons at UHDR on three different 65-mm thick brass collimators as manufactured for protons with a 400-µm slit width: single slit, 5 slits with a center-to-center (CTC) distance of 4 mm and 9 slits with CTC of 2 mm. Finally, complementary simulations were run by changing critical PMBT collimator parameters to assess their specific impact on peak-to-valley dose ratio (PVDR) as well as on the Bremsstrahlung photon contribution to the total dose. RESULTS Percentage depth dose (PDD) distributions and lateral dose profiles showed a good agreement between simulations and measurements, with a maximum discrepancy of less than 4%. With the PMBT collimators in place, discrepancies between simulated and measured dose profiles, lateral and in-depth in peaks and valleys, were within 3%. High PVDR between 5 and 26 were observed until 4 mm in the phantom. During the experiments, a mean dose rate of 167 Gy/s and an instantaneous dose rate of 1.2 × 105 Gy/s were obtained for the FLASH-minibeam setup. PMBT collimator parameters need to be optimized to maximize PVDR while limiting Bremsstrahlung photon contribution to the total dose. CONCLUSIONS The validation of the MC model and the configuration of an electron FLASH-minibeam setup were successfully completed, paving the way for future radiobiological investigations.
Collapse
Affiliation(s)
- Anthony Bonfrate
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France
- Institut Curie, PSL Research University, Inserm LITO, U1288, University of Paris Saclay, Orsay, France
| | - Maria Grazia Ronga
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France
- Institut Curie, PSL Research University, Inserm LITO, U1288, University of Paris Saclay, Orsay, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France
| | | | - Ludovic De Marzi
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France
- Institut Curie, PSL Research University, Inserm LITO, U1288, University of Paris Saclay, Orsay, France
| |
Collapse
|
2
|
Anoud M, Delagoutte E, Helleu Q, Brion A, Duvernois-Berthet E, As M, Marques X, Lamribet K, Senamaud-Beaufort C, Jourdren L, Adrait A, Heinrich S, Toutirais G, Hamlaoui S, Gropplero G, Giovannini I, Ponger L, Geze M, Blugeon C, Couté Y, Guidetti R, Rebecchi L, Giovannangeli C, De Cian A, Concordet JP. Comparative transcriptomics reveal a novel tardigrade-specific DNA-binding protein induced in response to ionizing radiation. eLife 2024; 13:RP92621. [PMID: 38980300 PMCID: PMC11233135 DOI: 10.7554/elife.92621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.
Collapse
Affiliation(s)
- Marwan Anoud
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- Université Paris-SaclayOrsayFrance
| | | | - Quentin Helleu
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Alice Brion
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | | - Marie As
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Xavier Marques
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | | | - Catherine Senamaud-Beaufort
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Laurent Jourdren
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Sophie Heinrich
- Institut Curie, Inserm U1021-CNRS UMR 3347, Université Paris-Saclay, Université PSLOrsay CedexFrance
- Plateforme RADEXP, Institut CurieOrsayFrance
| | | | | | | | - Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Loic Ponger
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Marc Geze
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | - Corinne Blugeon
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | | | - Anne De Cian
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | |
Collapse
|
3
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
4
|
Dai T, Sloop AM, Rahman MR, Sunnerberg JP, Clark MA, Young R, Adamczyk S, Voigts-Rhetz PV, Patane C, Turk M, Jarvis L, Pogue BW, Gladstone DJ, Bruza P, Zhang R. First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC. Med Phys 2024; 51:5109-5118. [PMID: 38493501 PMCID: PMC11316970 DOI: 10.1002/mp.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong 250000, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | | | | | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Ralph Young
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | | | | | - Chris Patane
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Michael Turk
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison WI 53705 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
5
|
Cetnar AJ, Jain S, Gupta N, Chakravarti A. Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons. Med Phys 2024; 51:1415-1420. [PMID: 38159300 DOI: 10.1002/mp.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate radiation (UHDR) is being explored by researchers in promise of advancing radiation therapy treatments. PURPOSE This work presents the commissioning of Varian's Flash Extension for research (FLEX) conversion of a Clinac to deliver UHDR electrons. METHODS A Varian Clinac iX with the FLEX conversion was commissioned for non-clinical research use with 16 MeV UHDR (16H) energy. This involved addition of new hardware, optimizing the electron gun voltages, radiofrequency (RF) power, and steering coils in order to maximize the accelerated electron beam current, sending the beam through custom scattering foils to produce the UHDR with 16H beam. Profiles and percent depth dose (PDD) measurements for 16H were obtained using radiochromic film in a custom vertical film holder and were compared to 16 MeV conventional electrons (16C). Dose rate and dose per pulse (DPP) were calculated from measured dose in film. Linearity and stability were assessed using an Advanced Markus ionization chamber. RESULTS Energies for 16H and 16C had similar beam quality based on PDD measurements. Measurements at the head of the machine (61.3 cm SSD) with jaws set to 10×10 cm2 showed the FWHM of the profile as 7.2 cm, with 3.4 Gy as the maximum DPP and instantaneous dose rate of 8.1E5 Gy/s. Measurements at 100 cm SSD with 10 cm standard cone showed the full width at half max (FWHM) of the profile as 10.5 cm, 1.08 Gy as the maximum DPP and instantaneous dose rate of 2.E5 Gy/s. Machine output with number of pulses was linear (R = 1) from 1 to 99 delivered pulses. Output stability was measured within ±1% within the same session and within ±2% for daily variations. CONCLUSIONS The FLEX conversion of the Clinac is able to generate UHDR electron beams which are reproducible with beam properties similar to clinically used electrons at 16 MeV. Having a platform which can quickly transition between UHDR and conventional modes (<1 min) can be advantageous for future research applications.
Collapse
Affiliation(s)
- Ashley J Cetnar
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sagarika Jain
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nilendu Gupta
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Kim KT, Choi Y, Cho GS, Jang WI, Yang KM, Lee SS, Bahng J. Evaluation of the water-equivalent characteristics of the SP34 plastic phantom for film dosimetry in a clinical linear accelerator. PLoS One 2023; 18:e0293191. [PMID: 37871021 PMCID: PMC10593237 DOI: 10.1371/journal.pone.0293191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
In this study, some confusing points about electron film dosimetry using white polystyrene suggested by international protocols were verified using a clinical linear accelerator (LINAC). According to international protocol recommendations, ionometric measurements and film dosimetry were performed on an SP34 slab phantom at various electron energies. Scaling factor analysis using ionometric measurements yielded a depth scaling factor of 0.923 and a fluence scaling factor of 1.019 at an electron beam energy of <10 MeV (i.e., R50 < 4.0 g/cm2). It was confirmed that the water-equivalent characteristics were similar because they have values similar to white polystyrene (i.e., depth scaling factor of 0.922 and fluence scaling factor of 1.019) presented in international protocols. Furthermore, percentage depth dose (PDD) curve analysis using film dosimetry showed that when the density thickness of the SP34 slab phantom was assumed to be water-equivalent, it was found to be most similar to the PDD curve measured using an ionization chamber in water as a reference medium. Therefore, we proved that the international protocol recommendation that no correction for measured depth dose is required means that no scaling factor correction for the plastic phantom is necessary. This study confirmed two confusing points that could occur while determining beam characteristics using electron film dosimetry, and it is expected to be used as basic data for future research on clinical LINACs.
Collapse
Affiliation(s)
- Kyo-Tae Kim
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
- Research and Development team, Radexel Inc., Seoul, Korea
| | - Yona Choi
- Department of Accelerator Science, Korea University Sejong Campus, Sejong, Korea
| | - Gyu-Seok Cho
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Won-Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kwang-Mo Yang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Soon-Sung Lee
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jungbae Bahng
- Research and Development team, Radexel Inc., Seoul, Korea
- Department of Radiation Oncology, Kangwon National University hospital, Chun-cheon, Korea
| |
Collapse
|
7
|
Jain S, Cetnar A, Woollard J, Gupta N, Blakaj D, Chakravarti A, Ayan AS. Pulse parameter optimizer: an efficient tool for achieving prescribed dose and dose rate with electron FLASH platforms. Phys Med Biol 2023; 68:19NT01. [PMID: 37735967 DOI: 10.1088/1361-6560/acf63e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Purpose. Commercial electron FLASH platforms deliver ultra-high dose rate doses at discrete combinations of pulse parameters including pulse width (PW), pulse repetition frequency (PRF) and number of pulses (N), which dictate unique combinations of dose and dose rates. Additionally, collimation, source to surface distance, and airgaps also vary the dose per pulse (DPP). Currently, obtaining pulse parameters for the desired dose and dose rate is a cumbersome manual process involving creating, updating, and looking up values in large spreadsheets for every treatment configuration. This work presents a pulse parameter optimizer application to match intended dose and dose rate precisely and efficiently.Methods. Dose and dose rate calculation methods have been described for a commercial electron FLASH platform. A constrained optimization for the dose and dose rate cost function was modelled as a mixed integer problem in MATLAB (The MathWorks Inc., Version9.13.0 R2022b, Natick, Massachusetts). The beam and machine data required for the application were acquired using GafChromic film and alternating current current transformers (ACCTs). Variables for optimization included DPP for every collimator, PW and PRF measured using ACCT and airgap factors.Results. Using PW, PRF,Nand airgap factors as parameters, a software was created to optimize dose and dose rate, reaching the closest match if exact dose and dose rates are not achievable. Optimization took 20 s or less to converge to results. This software was validated for accuracy of dose calculation and precision in matching prescribed dose and dose rate.Conclusion. A pulse parameter optimization application was built for a commercial electron FLASH platform to increase efficiency in dose, dose rate, and pulse parameter prescription process. Automating this process reduces safety concerns associated with manual look up and calculation of these parameters, especially when many subjects at different doses and dose rates are to be safely managed.
Collapse
Affiliation(s)
- S Jain
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A Cetnar
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - J Woollard
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - N Gupta
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - D Blakaj
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A Chakravarti
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A S Ayan
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| |
Collapse
|
8
|
Petoukhova A, Snijder R, Vissers T, Ceha H, Struikmans H. In vivodosimetry in cancer patients undergoing intraoperative radiation therapy. Phys Med Biol 2023; 68:18TR01. [PMID: 37607566 DOI: 10.1088/1361-6560/acf2e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
In vivodosimetry (IVD) is an important tool in external beam radiotherapy (EBRT) to detect major errors by assessing differences between expected and delivered dose and to record the received dose by individual patients. Also, in intraoperative radiation therapy (IORT), IVD is highly relevant to register the delivered dose. This is especially relevant in low-risk breast cancer patients since a high dose of IORT is delivered in a single fraction. In contrast to EBRT, online treatment planning based on intraoperative imaging is only under development for IORT. Up to date, two commercial treatment planning systems proposed intraoperative ultrasound or in-room cone-beam CT for real-time IORT planning. This makes IVD even more important because of the possibility for real-time treatment adaptation. Here, we summarize recent developments and applications of IVD methods for IORT in clinical practice, highlighting important contributions and identifying specific challenges such as a treatment planning system for IORT. HDR brachytherapy as a delivery technique was not considered. We add IVD for ultrahigh dose rate (FLASH) radiotherapy that promises to improve the treatment efficacy, when compared to conventional radiotherapy by limiting the rate of toxicity while maintaining similar tumour control probabilities. To date, FLASH IORT is not yet in clinical use.
Collapse
Affiliation(s)
- Anna Petoukhova
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Roland Snijder
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Thomas Vissers
- Haaglanden Medical Centre , Medical Library, Leidschendam, The Netherlands
| | - Heleen Ceha
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| | - Henk Struikmans
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| |
Collapse
|
9
|
Marinelli M, di Martino F, Del Sarto D, Pensavalle JH, Felici G, Giunti L, De Liso V, Kranzer R, Verona C, Verona Rinati G. A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams. Phys Med Biol 2023; 68:175011. [PMID: 37494946 DOI: 10.1088/1361-6560/acead0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Objective.A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting ofμs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany).Approach.A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A 'standard' flashDiamond was also investigated and its response compared with the one of the specifically designed prototype.Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference60Co irradiation. I-DRs as high as about 2 MGy s-1were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type.Significance.The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived.
Collapse
Affiliation(s)
- Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | - Fabio di Martino
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - Damiano Del Sarto
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | | | | | | | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg D-79115, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, D-26121 Germany
| | - Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | | |
Collapse
|
10
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
11
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
12
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
13
|
Rahman M, Trigilio A, Franciosini G, Moeckli R, Zhang R, Böhlen TT. FLASH radiotherapy treatment planning and models for electron beams. Radiother Oncol 2022; 175:210-221. [PMID: 35964763 DOI: 10.1016/j.radonc.2022.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Antonio Trigilio
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Gaia Franciosini
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
14
|
Schneider T, Fernandez-Palomo C, Bertho A, Fazzari J, Iturri L, Martin OA, Trappetti V, Djonov V, Prezado Y. Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiother Oncol 2022; 175:169-177. [PMID: 35952978 DOI: 10.1016/j.radonc.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
FLASH radiotherapy (FLASH-RT) and spatially fractionated radiation therapy (SFRT) are two new therapeutical strategies that use non-standard dose delivery methods to reduce normal tissue toxicity and increase the therapeutic index. Although likely based on different mechanisms, both FLASH-RT and SFRT have shown to elicit radiobiological effects that significantly differ from those induced by conventional radiotherapy. With the therapeutic potential having been established separately for each technique, the combination of FLASH-RT and SFRT could therefore represent a winning alliance. In this review, we discuss the state of the art, advantages and current limitations, potential synergies, and where a combination of these two techniques could be implemented today or in the near future.
Collapse
Affiliation(s)
- Tim Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | | | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Olga A Martin
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; University of Melbourne, Parkville, VIC 3010, Australia
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| |
Collapse
|
15
|
Rinati GV, Felici G, Galante F, Gasparini A, Kranzer R, Mariani G, Pacitti M, Prestopino G, Schüller A, Vanreusel V, Verellen D, Verona C, Marinelli M. Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams. Med Phys 2022; 49:5513-5522. [PMID: 35652248 PMCID: PMC9543846 DOI: 10.1002/mp.15782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose A diamond detector prototype was recently proposed by Marinelli et al. (Medical Physics 2022, https://doi.org/10.1002/mp.15473) for applications in ultrahigh‐dose‐per‐pulse (UH‐DPP) and ultrahigh‐dose‐rate (UH‐DR) beams, as used in FLASH radiotherapy (FLASH‐RT). In the present study, such so‐called flashDiamond (fD) was investigated from the dosimetric point of view, under pulsed electron beam irradiation. It was then used for the commissioning of an ElectronFlash linac (SIT S.p.A., Italy) both in conventional and UH‐DPP modalities. Methods Detector calibration was performed in reference conditions, under 60Co and electron beam irradiation. Its response linearity was investigated in UH‐DPP conditions. For this purpose, the DPP was varied in the 1.2–11.9 Gy range, by changing either the beam applicator or the pulse duration from 1 to 4 μs. Dosimetric validation of the fD detector prototype was then performed in conventional modality, by measuring percentage depth dose (PDD) curves, beam profiles, and output factors (OFs). All such measurements were carried out in a motorized water phantom. The obtained results were compared with the ones from commercially available dosimeters, namely, a microDiamond, an Advanced Markus ionization chamber, a silicon diode detector, and EBT‐XD GAFchromic films. Finally, the fD detector was used to fully characterize the 7 and 9 MeV UH‐DPP electron beams delivered by the ElectronFlash linac. In particular, PDDs, beam profiles, and OFs were measured, for both energies and all the applicators, and compared with the ones from EBT‐XD films irradiated in the same experimental conditions. Results The fD calibration coefficient resulted to be independent from the investigated beam qualities. The detector response was found to be linear in the whole investigated DPP range. A very good agreement was observed among PDDs, beam profiles, and OFs measured by the fD prototype and reference detectors, both in conventional and UH‐DPP irradiation modalities. Conclusions The fD detector prototype was validated from the dosimetric point of view against several commercial dosimeters in conventional beams. It was proved to be suitable in UH‐DPP and UH‐DR conditions, for which no other commercial real‐time active detector is available to date. It was shown to be a very useful tool to perform fast and reproducible beam characterizations in standard clinical motorized water phantom setups. All of the previously mentioned demonstrate the suitability of the proposed detector for the commissioning of UH‐DR linac beams for preclinical FLASH‐RT applications.
Collapse
Affiliation(s)
- Gianluca Verona Rinati
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata,", Roma, 00133, Italy
| | | | | | - Alessia Gasparini
- Iridium Kankernetwerk, Antwerp, 2610, Belgium.,Antwerp University, Faculty of Medicine and Health Sciences, Antwerp, 2610, Belgium
| | - Rafael Kranzer
- PTW-Freiburg, Freiburg, 79115, Germany.,University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, 26121, Germany
| | | | | | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata,", Roma, 00133, Italy
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt, Braunschweig, 38116, Germany
| | - Verdi Vanreusel
- Iridium Kankernetwerk, Antwerp, 2610, Belgium.,Antwerp University, Faculty of Medicine and Health Sciences, Antwerp, 2610, Belgium
| | - Dirk Verellen
- Iridium Kankernetwerk, Antwerp, 2610, Belgium.,Antwerp University, Faculty of Medicine and Health Sciences, Antwerp, 2610, Belgium
| | - Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata,", Roma, 00133, Italy
| | - Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata,", Roma, 00133, Italy
| |
Collapse
|
16
|
Bourgouin A, Knyziak A, Marinelli M, Kranzer R, Schüller A, Kapsch RP. Characterization of the PTB ultra-high pulse dose rate reference electron beam. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5de8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Purpose. This investigation aims to present the characterisation and optimisation of an ultra-high pulse dose rate (UHPDR) electron beam at the PTB facility in Germany. A Monte Carlo beam model has been developed for dosimetry study for future investigation in FLASH radiotherapy and will be presented. Material and methods. The 20 MeV electron beams generated by the research linear accelerator has been characterised both in-beamline with profile monitors and magnet spectrometer, and in-water with a diamond detector prototype. The Monte Carlo model has been used to investigate six different setups to enable different dose per pulse (DPP) ranges and beam sizes in water. The properties of the electron radiation field in water have also been characterised in terms of beam size, quality specifier R
50 and flatness. The beam stability has also been studied. Results. The difference between the Monte-Carlo simulated and measured R
50 was smaller than 0.5 mm. The simulated beam sizes agreed with the measured ones within 2 mm. Two suitable setups have been identified for delivering reference UHPDR electron beams. The first one is characterised by a SSD of 70 cm, while in the second one an SSD of 90 cm is used in combination with a 2 mm aluminium scattering plates. The two set-ups are quick and simple to install and enable an expected overall DPP range from 0.13 Gy up to 6.7 Gy per pulse. Conclusion. The electron beams generated by the PTB research accelerator have shown to be stable throughout the four-months length of this investigation. The Monte Carlo models have shown to be in good agreement for beam size and depth dose and within 1% for the beam flatness. The diamond detector prototype has shown to be a promising tool to be used for relative measurements in UHPDR electron beams.
Collapse
|
17
|
Farr J, Grilj V, Malka V, Sudharsan S, Schippers M. Ultra‐High dose rate radiation production and delivery systems intended for FLASH. Med Phys 2022; 49:4875-4911. [PMID: 35403262 PMCID: PMC9544515 DOI: 10.1002/mp.15659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Higher dose rates, a trend for radiotherapy machines, can be beneficial in shortening treatment times for radiosurgery and mitigating the effects of motion. Recently, even higher doses (e.g., 100 times greater) have become targeted because of their potential to generate the FLASH effect (FE). We refer to these physical dose rates as ultra‐high (UHDR). The complete relationship between UHDR and the FE is unknown. But UHDR systems are needed to explore the relationship further and to deliver clinical UHDR treatments, where indicated. Despite the challenging set of unknowns, the authors seek to make reasonable assumptions to probe how existing and developing technology can address the UHDR conditions needed to provide beam generation capable of producing the FE in preclinical and clinical applications. As a preface, this paper discusses the known and unknown relationships between UHDR and the FE. Based on these, different accelerator and ionizing radiation types are then discussed regarding the relevant UHDR needs. The details of UHDR beam production are discussed for existing and potential future systems such as linacs, cyclotrons, synchrotrons, synchrocyclotrons, and laser accelerators. In addition, various UHDR delivery mechanisms are discussed, along with required developments in beam diagnostics and dose control systems.
Collapse
Affiliation(s)
- Jonathan Farr
- Applications of Detectors and Accelerators to Medicine Meyrin 1217 Switzerland
| | - Veljko Grilj
- Lausanne University Hospital Lausanne 1011 Switzerland
| | - Victor Malka
- Weizmann Institute of Science Rehovot 7610001 Israel
| | | | | |
Collapse
|
18
|
Marinelli M, Felici G, Galante F, Gasparini A, Giuliano L, Heinrich S, Pacitti M, Prestopino G, Vanreusel V, Verellen D, Verona C, Verona Rinati G. Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Med Phys 2022; 49:1902-1910. [PMID: 35064594 PMCID: PMC9306529 DOI: 10.1002/mp.15473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE FLASH radiotherapy (RT) is an emerging technique in which beams with ultra-high dose rates (UH-DR) and dose per pulse (UH-DPP) are used. Commercially available active real-time dosimeters have been shown to be unsuitable in such conditions, due to severe response nonlinearities. In the present study, a novel diamond-based Schottky diode detector was specifically designed and realized to match the stringent requirements of FLASH-RT. METHODS A systematic investigation of the main features affecting the diamond response in UH-DPP conditions was carried out. Several diamond Schottky diode detector prototypes with different layouts were produced at Rome Tor Vergata University in cooperation with PTW-Freiburg. Such devices were tested under electron UH-DPP beams. The linearity of the prototypes was investigated up to DPPs of about 26 Gy/pulse and dose rates of approximately 1 kGy/s. In addition, percentage depth dose (PDD) measurements were performed in different irradiation conditions. Radiochromic films were used for reference dosimetry. RESULTS The response linearity of the diamond prototypes was shown to be strongly affected by the size of their active volume as well as by their series resistance. By properly tuning the design layout, the detector response was found to be linear up to at least 20 Gy/pulse, well into the UH-DPP range conditions. PDD measurements were performed by three different linac applicators, characterized by DPP values at the point of maximum dose of 3.5, 17.2, and 20.6 Gy/pulse, respectively. The very good superimposition of three curves confirmed the diamond response linearity. It is worth mentioning that UH-DPP irradiation conditions may lead to instantaneous detector currents as high as several mA, thus possibly exceeding the electrometer specifications. This issue was properly addressed in the case of the PTW UNIDOS electrometers. CONCLUSIONS The results of the present study clearly demonstrate the feasibility of a diamond detector for FLASH-RT applications.
Collapse
Affiliation(s)
- Marco Marinelli
- Industrial Engineering DepartmentUniversity of Rome “Tor Vergata”RomeItaly
| | | | | | - Alessia Gasparini
- Iridium Kankernetwerk, AntwerpBelgium
- University of AntwerpAntwerpBelgium
| | - Lucia Giuliano
- Institut CurieInserm U 1021‐CNRS UMR 3347University Paris‐SaclayPSL Research UniversityOrsayFrance
| | - Sophie Heinrich
- Institut CurieInserm U 1021‐CNRS UMR 3347University Paris‐SaclayPSL Research UniversityOrsayFrance
| | | | | | - Verdi Vanreusel
- Iridium Kankernetwerk, AntwerpBelgium
- University of AntwerpAntwerpBelgium
| | - Dirk Verellen
- Iridium Kankernetwerk, AntwerpBelgium
- University of AntwerpAntwerpBelgium
| | - Claudio Verona
- Industrial Engineering DepartmentUniversity of Rome “Tor Vergata”RomeItaly
| | | |
Collapse
|
19
|
Ronga MG, Cavallone M, Patriarca A, Leite AM, Loap P, Favaudon V, Créhange G, De Marzi L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers (Basel) 2021; 13:4942. [PMID: 34638424 PMCID: PMC8507836 DOI: 10.3390/cancers13194942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of innovative approaches that would reduce the sensitivity of healthy tissues to irradiation while maintaining the efficacy of the treatment on the tumor is of crucial importance for the progress of the efficacy of radiotherapy. Recent methodological developments and innovations, such as scanned beams, ultra-high dose rates, and very high-energy electrons, which may be simultaneously available on new accelerators, would allow for possible radiobiological advantages of very short pulses of ultra-high dose rate (FLASH) therapy for radiation therapy to be considered. In particular, very high-energy electron (VHEE) radiotherapy, in the energy range of 100 to 250 MeV, first proposed in the 2000s, would be particularly interesting both from a ballistic and biological point of view for the establishment of this new type of irradiation technique. In this review, we examine and summarize the current knowledge on VHEE radiotherapy and provide a synthesis of the studies that have been published on various experimental and simulation works. We will also consider the potential for VHEE therapy to be translated into clinical contexts.
Collapse
Affiliation(s)
- Maria Grazia Ronga
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- Thales AVS Microwave & Imaging Sub-Systems, 78141 Vélizy-Villacoublay, France
| | - Marco Cavallone
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Annalisa Patriarca
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Amelia Maia Leite
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- INSERM LITO U1288, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France
| | - Pierre Loap
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Vincent Favaudon
- INSERM U 1021-CNRS UMR 3347, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France;
| | - Gilles Créhange
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Ludovic De Marzi
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- INSERM LITO U1288, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France
| |
Collapse
|
20
|
Abstract
Radiation therapy benefits the majority of patients across the spectrum of cancer types. However, both local and distant tumor recurrences limit its clinical success. While departing from the established tenet of fractionation in clinical radiotherapy, ablative-intensity hypofractionated radiotherapy, especially stereotactic radiosurgery and stereotactic ablative radiotherapy, has emerged as an alternative paradigm achieving unprecedented rates of local tumor control. Direct tumor cell killing has been assumed to be the primary therapeutic mode of action of such ablative radiation. But with increasing recognition that tumor responses also depend on the immunostimulatory or immunosuppressive status of the tumor microenvironment, the immunologic effect of ablative radiotherapy is emerging as a key contributor to antitumor response. More recently, novel radiation modalities, such as spatially fractionated radiotherapy and ultrahigh dose rate FLASH irradiation, that venture even further from conventional paradigms have shown promise of increasing the therapeutic index of radiation therapy with the potential of immunomodulation. Here, we review the immunomodulatory impact of novel radiation therapy paradigms, heretofore considered radiobiological heresies, a deeper understanding of which is imperative to realizing fully their potential for more curative cancer therapy.
Collapse
|
21
|
Independent validation of a dedicated commissioning software and investigation of the direction dependence of the field symmetry for the LIAC intraoperative electron radiotherapy accelerator. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Nesteruk KP, Togno M, Grossmann M, Lomax AJ, Weber DC, Schippers JM, Safai S, Meer D, Psoroulas S. Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Med Phys 2021; 48:4017-4026. [PMID: 33963576 DOI: 10.1002/mp.14933] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/04/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The purpose of this work was to provide a flexible platform for FLASH research with protons by adapting a former clinical pencil beam scanning gantry to irradiations with ultra-high dose rates. METHODS PSI Gantry 1 treated patients until December 2018. We optimized the beamline parameters to transport the 250 MeV beam extracted from the PSI COMET accelerator to the treatment room, maximizing the transmission of beam intensity to the sample. We characterized a dose monitor on the gantry to ensure good control of the dose, delivered in spot-scanning mode. We characterized the beam for different dose rates and field sizes for transmission irradiations. We explored scanning possibilities in order to enable conformal irradiations or transmission irradiations of large targets (with transverse scanning). RESULTS We achieved a transmission of 86% from the cyclotron to the treatment room. We reached a peak dose rate of 9000 Gy/s at 3 mm water equivalent depth, along the central axis of a single pencil beam. Field sizes of up to 5 × 5 mm2 were achieved for single-spot FLASH irradiations. Fast transverse scanning allowed to cover a field of 16 × 1.2 cm2 . With the use of a nozzle-mounted range shifter, we are able to span depths in water ranging from 19.6 to 37.9 cm. Various dose levels were delivered with precision within less than 1%. CONCLUSIONS We have realized a proton FLASH irradiation setup able to investigate continuously a wide dose rate spectrum, from 1 to 9000 Gy/s in single-spot irradiation as well as in the pencil beam scanning mode. As such, we have developed a versatile test bench for FLASH research.
Collapse
Affiliation(s)
- Konrad P Nesteruk
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Grossmann
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Anthony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| | - Jacobus M Schippers
- Division of Large Research Facilities, Paul Scherrer Institute, Villigen, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
23
|
Moeckli R, Gonçalves Jorge P, Grilj V, Oesterle R, Cherbuin N, Bourhis J, Vozenin MC, Germond JF, Bochud F, Bailat C. Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Med Phys 2021; 48:3134-3142. [PMID: 33866565 DOI: 10.1002/mp.14885] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2020] [Accepted: 03/31/2021] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To present the acceptance and the commissioning, to define the reference dose, and to prepare the reference data for a quality assessment (QA) program of an ultra-high dose rate (UHDR) electron device in order to validate it for preclinical animal FLASH radiotherapy (FLASH RT) experiments and for FLASH RT clinical human protocols. METHODS The Mobetron® device was evaluated with electron beams of 9 MeV in conventional (CONV) mode and of 6 and 9 MeV in UHDR mode (nominal energy). The acceptance was performed according to the acceptance protocol of the company. The commissioning consisted of determining the short- and long-term stability of the device, the measurement of percent depth dose curves (PDDs) and profiles at two different positions (with two different dose per pulse regimen) and for different collimator sizes, and the evaluation of the variability of these parameters when changing the pulse width and pulse repetition frequency. Measurements were performed using a redundant and validated dosimetric strategy with alanine and radiochromic films, as well as Advanced Markus ionization chamber for some measurements. RESULTS The acceptance tests were all within the tolerances of the company's acceptance protocol. The linearity with pulse width was within 1.5% in all cases. The pulse repetition frequency did not affect the delivered dose more than 2% in all cases but 90 Hz, for which the larger difference was 3.8%. The reference dosimetry showed a good agreement within the alanine and films with variations of 2.2% or less. The short-term (resp. long-term) stability was less than 1.0% (resp. 1.8%) and was the same in both CONV and UHDR modes. PDDs, profiles, and reference dosimetry were measured at two positions, providing data for two specific dose rates (about 9 Gy/pulse and 3 Gy/pulse). Maximal beam size was 4 and 6 cm at 90% isodose in the two positions tested. There was no difference between CONV and UHDR mode in the beam characteristics tested. CONCLUSIONS The device is commissioned for FLASH RT preclinical biological experiments as well as FLASH RT clinical human protocols.
Collapse
Affiliation(s)
- Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Roxane Oesterle
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Nicolas Cherbuin
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Jean Bourhis
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | - Marie-Catherine Vozenin
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| |
Collapse
|
24
|
Hachemi T, Chaoui ZEA, Khoudri S. PENELOPE simulations and experiment for 6 MV clinac iX accelerator for standard and small static fields. Appl Radiat Isot 2021; 174:109749. [PMID: 33940355 DOI: 10.1016/j.apradiso.2021.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
The goal of this work was to produce accurate data for use as a 'gold standard' and a valid tool for measurements in reference dosimetry for standard/small static field sizes from 0.5 × 0.5 to 10 × 10 cm2. It is based on the accuracy of the phase space files (PSFs) as a key quantity. Because the IAEA general public database provides few PSFs for the Varian iX, we simulated the head through Monte Carlo (MC) simulations and calculated validated PSFs for 12 square field sizes including seven for small static fields. The resulting dosimetric calculations allowed us to reach a good level of agreement in comparison to our relative and absolute dose measurements performed on a Varian iX in water phantom. Measured and MC calculated output factors were investigated for different detectors. Based on the TRS 483 formalism and MC (PENELOPE/penEasy), we calculated output correction factors for the unshielded Diode-E (T60017) and the PinPoint-3D (T31016) micro-chamber according to manufacturers' blueprints. Our MC results were in agreement with the recommended data; they compete with recent measurements and MC simulations and in particular the TRS 483 MC data obtained from similar simulations. Moreover, our MC results provide supplemental data in comparison to TRS 483 data in particular for the PinPoint-3D (T31016). We suggest our MC output correction factors as new datasets for future TRS compilations. The work was substantial, used different robust MC strategies depending on the scoring regions, and led in most cases to uncertainties of less than 1%.
Collapse
Affiliation(s)
- Taha Hachemi
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria.
| | - Zine-El-Abidine Chaoui
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria
| | - Saad Khoudri
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria; Centre de Lutte Contre le Cancer de Sétif, Algeria
| |
Collapse
|
25
|
Verhaegen F, Wanders RG, Wolfs C, Eekers D. Considerations for shoot-through FLASH proton therapy. Phys Med Biol 2021; 66:06NT01. [PMID: 33571981 DOI: 10.1088/1361-6560/abe55a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To discuss several pertinent issues related to shoot-through FLASH proton therapy based on an illustrative case. METHODS We argue that with the advent of FLASH proton radiotherapy and due to the issues associated with conventional proton radiotherapy regarding the uncertainties of positioning of the Bragg peaks, the difficulties of in vivo verification of the dose distribution, the use of treatment margins and the uncertainties surrounding linear energy transfer (LET) and relative biological effectiveness (RBE), a special mode of shoot-through FLASH proton radiotherapy should be investigated. In shoot-through FLASH, the proton beams have sufficient energy to reach the distal exit side of the patient. Due to the FLASH sparing effect of normal tissues at both the proximal and distal side of tumors, radiotherapy plans can be developed that meet current planning constraints and issues regarding RBE can be avoided. RESULTS A preliminary proton plan for a neurological tumor in close proximity to various organs at risk (OAR) with strict dose constraints was studied. A plan with four beams mostly met the constraints for the OAR, using a treatment planning system that was not optimized for this novel treatment modality. When new treatment planning algorithms would be developed for shoot-through FLASH, constraints would be easier to meet. The shoot-through FLASH plan led to a significant effective dose reduction in large parts of the healthy tissue. The plan had no uncertainties associated to Bragg peak positioning, needed in principle no large proximal or distal margins and LET increases near the Bragg peak became irrelevant. CONCLUSION Shoot-through FLASH proton radiotherapy may be an interesting treatment modality to explore further. It would remove some of the current sources of uncertainty in proton radiotherapy. An additional advantage could be that portal dosimetry may be possible with beams penetrating the patient and impinging on a distally placed imaging detector, potentially leading to a practical treatment verification method. With current proton accelerator technology, trials could be conducted for neurological, head&neck and thoracic cancers. For abdominal and pelvic cancer a higher proton energy would be required.
Collapse
Affiliation(s)
- Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol 2020; 65:23TR03. [PMID: 32721941 DOI: 10.1088/1361-6560/abaa28] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrahigh dose-rate radiotherapy (RT), or 'FLASH' therapy, has gained significant momentum following various in vivo studies published since 2014 which have demonstrated a reduction in normal tissue toxicity and similar tumor control for FLASH-RT when compared with conventional dose-rate RT. Subsequent studies have sought to investigate the potential for FLASH normal tissue protection and the literature has been since been inundated with publications on FLASH therapies. Today, FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. The goal of this review article is to present the current state of this intriguing RT technique and to review existing publications on FLASH-RT in terms of its physical and biological aspects. In the physics section, the current landscape of ultrahigh dose-rate radiation delivery and dosimetry is presented. Specifically, electron, photon and proton radiation sources capable of delivering ultrahigh dose-rates along with their beam delivery parameters are thoroughly discussed. Additionally, the benefits and drawbacks of radiation detectors suitable for dosimetry in FLASH-RT are presented. The biology section comprises a summary of pioneering in vitro ultrahigh dose-rate studies performed in the 1960s and early 1970s and continues with a summary of the recent literature investigating normal and tumor tissue responses in electron, photon and proton beams. The section is concluded with possible mechanistic explanations of the FLASH normal-tissue protection effect (FLASH effect). Finally, challenges associated with clinical translation of FLASH-RT and its future prospects are critically discussed; specifically, proposed treatment machines and publications on treatment planning for FLASH-RT are reviewed.
Collapse
Affiliation(s)
- Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
27
|
Incerti S, Brown JM, Guatelli S. Advances in Geant4 applications in medicine. Phys Med 2020; 70:224-227. [DOI: 10.1016/j.ejmp.2020.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
|
28
|
Guardiola C, De Marzi L, Prezado Y. Verification of a Monte Carlo dose calculation engine in proton minibeam radiotherapy in a passive scattering beamline for preclinical trials. Br J Radiol 2019; 93:20190578. [PMID: 31868523 DOI: 10.1259/bjr.20190578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that combines the benefits of proton therapy with the remarkable normal tissue preservation observed with the use of submillimetric spatially fractionated beams. This promising technique has been implemented at the Institut Curie-Proton therapy centre (ICPO) using a first prototype of a multislit collimator. The purpose of this work was to develop a Monte Carlo-based dose calculation engine to reliably guide preclinical studies at ICPO. METHODS The whole "Y1"-passive beamline at the ICPO, including pMBRT implementation, was modelled using the Monte Carlo GATE v. 7.0 code. A clinically relevant proton energy (100 MeV) was used as starting point. Minibeam generation by means of the brass collimator used in the first experiments was modelled. A virtual source was modelled at the exit of the beamline nozzle and outcomes were compared with dosimetric measurements performed with EBT3 gafchromic films and a diamond detector in water. Dose distributions were recorded in a water phantom and in rat CT images (7-week-old male Fischer rats). RESULTS The dose calculation engine was benchmarked against experimental data and was then used to assess dose distributions in CT images of a rat, resulting from different irradiation configurations used in several experiments. It reduced computational time by an order of magnitude. This allows us to speed up simulations for in vivo trials, where we obtained peak-to-valley dose ratios of 1.20 ± 0.05 and 6.1 ± 0.2 for proton minibeam irradiations targeting the tumour and crossing the rat head. Tumour eradication was observed in the 67 and 22% of the animals treated respectively. CONCLUSION A Monte Carlo dose calculation engine for pMBRT implementation with mechanical collimation has been developed. This tool can be used to guide and interpret the results of in vivo trials. ADVANCES IN KNOWLEDGE This is the first Monte Carlo dose engine for pMBRT that is being used to guide preclinical trials in a clinical proton therapy centre.
Collapse
Affiliation(s)
- Consuelo Guardiola
- Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Orsay Cedex, 91405, France
| | - Ludovic De Marzi
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France.,Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| | - Yolanda Prezado
- Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Orsay Cedex, 91405, France
| |
Collapse
|