1
|
Miyamoto N, Katoh N, Kanehira T, Yokokawa K, Suzuki R, Uchinami Y, Taguchi H, Abo D, Aoyama H. Clinical application of real-time tumor-tracking for stereotactic volumetric modulated arc therapy for liver tumors. Phys Imaging Radiat Oncol 2024; 31:100623. [PMID: 39224689 PMCID: PMC11367098 DOI: 10.1016/j.phro.2024.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Real-time tumor-tracking volumetric modulated arc therapy (RT-VMAT) enabling beam-gating based on continuous X-ray tracking of the three-dimensional position of internal markers is relevant for moving tumors. Dose-volume characteristics and treatment time were evaluated in ten consecutive patients who underwent liver stereotactic body radiation therapy with RT-VMAT. Target dose conformity and sparing of the stomach and the intestine were improved comparing RT-VMAT with RT-3D conformal radiotherapy. The mean treatment time for each fraction was less than 10 min. RT-VMAT could be effective, especially for targets located adjacent to organs at risk.
Collapse
Affiliation(s)
- Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Norio Katoh
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takahiro Kanehira
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Kohei Yokokawa
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Yusuke Uchinami
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060–8648, Japan
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Hidefumi Aoyama
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
2
|
Tan HQ, Koh CWY, Lew KS, Yeap PL, Chua CGA, Lee JKH, Wibawa A, Master Z, Lee JCL, Park SY. Real-time gated proton therapy with a reduced source to imager distance: Commissioning and quality assurance. Phys Med 2024; 122:103380. [PMID: 38805761 DOI: 10.1016/j.ejmp.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION Real-time gated proton therapy (RGPT) is a motion management technique unique to the Hitachi particle therapy system. It uses pulsed fluoroscopy to track an implanted fiducial marker. There are currently no published guidelines on how to conduct the commissioning and quality assurance. In this work we reported on our centre's commissioning workflow and our daily and monthly QA procedures. METHODS Six commissioning measurements were designed for RGPT. The measurements include imaging qualities, fluoroscopic exposures, RGPT marker tracking accuracy, temporal gating latency, fiducial marker tracking fidelity and an end-to-end proton dosimetry measurement. Daily QA consists of one measurement on marker localization accuracy. Four months daily QA trends are presented. Monthly QA consists of three measurementson the gating latency, fluoroscopy imaging quality and dosimetry verification of gating operation with RGPT. RESULTS The RGPT was successfully commissioned in our centre. The air kerma rates were within 15 % from specifications and the marker tracking accuracies were within 0.245 mm. The gating latencies for turning the proton beam on and off were 119.5 and 50.0 ms respectively. The 0.4x10.0 mm2 Gold AnchorTM gave the best tracking results with visibility up to 30 g/cm2. Gamma analysis showed that dose distribution of a moving and static detectors had a passing rate of more than 95 % at 3 %/3mm. The daily marker localization QA results were all less than 0.2 mm. CONCLUSION This work could serve as a good reference for other upcoming Hitachi particle therapy centres who are interested to use RGPT as their motion management solution.
Collapse
Affiliation(s)
- Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | | | - Kah Seng Lew
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Ping Lin Yeap
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | | | - Andrew Wibawa
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Zubin Master
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
3
|
Uchinami Y, Miyamoto N, Abo D, Morita R, Ogawa K, Kakisaka T, Suzuki R, Miyazaki T, Taguchi H, Katoh N, Aoyama H. Real-time tumor-tracking radiotherapy with SyncTraX for primary liver tumors requiring isocenter shift†. JOURNAL OF RADIATION RESEARCH 2024; 65:92-99. [PMID: 37996094 PMCID: PMC10803168 DOI: 10.1093/jrr/rrad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Indexed: 11/25/2023]
Abstract
The SyncTraX series enables real-time tumor-tracking radiotherapy through the real-time recognition of a fiducial marker using fluoroscopic images. In this system, the isocenter should be located within approximately 5-7.5 cm from the marker, depending on the version, owing to the limited field of view. If the marker is placed away from the tumor, the isocenter should be shifted toward the marker. This study aimed to investigate stereotactic body radiotherapy (SBRT) outcomes of primary liver tumors treated with SyncTraX in cases where the isocenter was shifted marginally or outside the planning target volume (PTV). Twelve patients with 13 liver tumors were included in the analysis. Their isocenter was shifted toward the marker and was placed marginally or outside the PTV. The prescribed doses were generally 40 Gy in four fractions or 48 Gy in eight fractions. The overall survival (OS) and local control (LC) rates were calculated using the Kaplan-Meier method. All patients completed the scheduled SBRT. The median distance between the fiducial marker and PTV centroid was 56.0 (interquartile range [IQR]: 52.7-66.7) mm. By shifting the isocenter toward the marker, the median distance between the marker and isocenter decreased to 34.0 (IQR: 33.4-39.7) mm. With a median follow-up period of 25.3 (range: 6.9-70.0) months, the 2-year OS and LC rates were 100.0% (95% confidence interval: 100-100). An isocenter shift makes SBRT with SyncTraX feasible in cases where the fiducial marker is distant from the tumor.
Collapse
Affiliation(s)
- Yusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
- Division of Applied Quantum Science and Engineering, Hokkaido University Faculty of Engineering, North 13 West 8, Kita-ku, Sapporo 060-8628, Japan
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Tomohiko Miyazaki
- Department of Radiation Oncology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
4
|
Hamaide V, Souris K, Dasnoy D, Glineur F, Macq B. Real-time image-guided treatment of mobile tumors in proton therapy by a library of treatment plans: a simulation study. Med Phys 2023; 50:465-479. [PMID: 36345808 DOI: 10.1002/mp.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To improve target coverage and reduce the dose in the surrounding organs-at-risks (OARs), we developed an image-guided treatment method based on a precomputed library of treatment plans controlled and delivered in real-time. METHODS A library of treatment plans is constructed by optimizing a plan for each breathing phase of a four dimensional computed tomography (4DCT). Treatments are delivered by simulation on a continuous sequence of synthetic computed tomographies (CTs) generated from real magnetic resonance imaging (MRI) sequences. During treatment, the plans for which the tumor are at a close distance to the current tumor position are selected to deliver their spots. The study is conducted on five liver cases. RESULTS We tested our approach under imperfect knowledge of the tumor positions with a 2 mm distance error. On average, compared to a 4D robustly optimized treatment plan, our approach led to a dose homogeneity increase of 5% (defined as 1 - D 5 - D 95 prescription $1-\frac{D_5-D_{95}}{\text{prescription}}$ ) in the target and a mean liver dose decrease of 23%. The treatment time was roughly increased by a factor of 2 but remained below 4 min on average. CONCLUSIONS Our image-guided treatment framework outperforms state-of-the-art 4D-robust plans for all patients in this study on both target coverage and OARs sparing, with an acceptable increase in treatment time under the current accuracy of the tumor tracking technology.
Collapse
Affiliation(s)
| | | | - Damien Dasnoy
- ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - Benoît Macq
- ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Górecka Ż, Choińska E, Heljak M, Święszkowski W. Long-Term In Vitro Assessment of Biodegradable Radiopaque Composites for Fiducial Marker Fabrication. Int J Mol Sci 2022; 23:ijms232214363. [PMID: 36430842 PMCID: PMC9697335 DOI: 10.3390/ijms232214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
Abstract
Biodegradable polymer-based composite materials may be successfully utilised to fabricate fiducial markers (FMs), which are intended to precisely label tumour margins during image-guided surgery or radiotherapy. However, due to matrix degradability, the stability of the functional properties of FMs depends on the chosen polymer. Thus, this study aimed to investigate novel radiopaque composites which varied in the polymeric matrix-polycaprolactone (PCL), poly(L-lactide-co-caprolactone) (P[LAcoCL]) with two molar ratios (70:30 and 85:15), and poly(L-lactide-co-glycolide) (with molar ratio 82:18). The radiopaque component of the materials was a mixture of barium sulphate and hydroxyapatite. The changes in water contact angle, stiffness, and radiopacity occurring during the 24-week-long degradation experiment were examined for the first time. This study comprehensively analyses the microstructural causes of composites behaviour within degradation experiments using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permitted chromatography (GPC), and scanning electron microscopy (SEM). The obtained results suggest that the utilized biodegradable matrix plays an essential role in radiopaque composite properties and stability thereof. This long-term in vitro assessment enabled a comparison of the materials and aided in choosing the most favourable composite for FMs' fabrication.
Collapse
Affiliation(s)
- Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki Str., 02-882 Warsaw, Poland
| | - Emilia Choińska
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Marcin Heljak
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Wojciech Święszkowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki Str., 02-882 Warsaw, Poland
- Correspondence:
| |
Collapse
|
6
|
Development of an x-ray-opaque-marker system for quantitative phantom positioning in patient-specific quality assurance. Phys Med 2021; 91:121-130. [PMID: 34785490 DOI: 10.1016/j.ejmp.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker. METHODS The recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations. RESULTS The root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker. CONCLUSIONS Sufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.
Collapse
|
7
|
Yasue K, Fuse H, Asano Y, Kato M, Shinoda K, Ikoma H, Fujisaki T, Tamaki Y. Investigation of fiducial marker recognition possibility by water equivalent length in real-time tracking radiotherapy. Jpn J Radiol 2021; 40:318-325. [PMID: 34655387 DOI: 10.1007/s11604-021-01207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Real-time tumor tracking radiotherapy (RTRT) systems typically use fiducial markers implanted near the tumor to track the target using X-ray fluoroscopy. Template pattern matching, used in tracking, is often used to automatically localize the fiducial markers. In radiotherapy of the liver, the thickness of the body that can recognize the fiducial markers must be clinically assessed. The purpose of this study was to quantify the recognition of fiducial markers according to body thickness in stereotactic body radiotherapy of the liver using clinical images obtained using SyncTraX FX4. The recognition scores of fiducial markers were examined in relation to water equivalent length (WEL), tube current, and each flat panel detector. The relationship between the contrast ratio of the fiducial marker and the background and the WEL was also investigated. The average recognition score was found to be less than 20 when the WEL was greater than 25 cm. The probability of successful tracking of image recognition was mostly smaller than 0.8 when the WEL was over 30 cm. The relationship between WEL and tube current did not significantly differ between 100 and 140 mA, but there was a significant difference (p < 0.05) for all other combinations. To ensure tracking of fiducial markers during SBRT, if the WEL representing body thickness is longer than 25 cm, the X-ray fluoroscopy arrangement should be determined based on the WEL.
Collapse
Affiliation(s)
- Kenji Yasue
- Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan.,Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Hiraku Fuse
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan.
| | - Yuto Asano
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Miho Kato
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Kazuya Shinoda
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Hideaki Ikoma
- Department of Radiation Technology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| | - Tatsuya Fujisaki
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2, Ami, Inashiki, Ibaraki, 300-0394, Japan
| | - Yoshio Tamaki
- Department of Radiation Oncology, Ibaraki Prefectural Central Hospital, 6528, Koibuchi, Kasama, Ibaraki, 309-1793, Japan
| |
Collapse
|
8
|
Ukon K, Arai Y, Takao S, Matsuura T, Ishikawa M, Shirato H, Shimizu S, Umegaki K, Miyamoto N. Prediction of target position from multiple fiducial markers by partial least squares regression in real-time tumor-tracking radiation therapy. JOURNAL OF RADIATION RESEARCH 2021; 62:926-933. [PMID: 34196697 PMCID: PMC8438269 DOI: 10.1093/jrr/rrab054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this work is to show the usefulness of a prediction method of tumor location based on partial least squares regression (PLSR) using multiple fiducial markers. The trajectory data of respiratory motion of four internal fiducial markers inserted in lungs were used for the analysis. The position of one of the four markers was assumed to be the tumor position and was predicted by other three fiducial markers. Regression coefficients for prediction of the position of the tumor-assumed marker from the fiducial markers' positions is derived by PLSR. The tracking error and the gating error were evaluated assuming two possible variations. First, the variation of the position definition of the tumor and the markers on treatment planning computed tomograhy (CT) images. Second, the intra-fractional anatomical variation which leads the distance change between the tumor and markers during the course of treatment. For comparison, rigid predictions and ordinally multiple linear regression (MLR) predictions were also evaluated. The tracking and gating errors of PLSR prediction were smaller than those of other prediction methods. Ninety-fifth percentile of tracking/gating error in all trials were 3.7/4.1 mm, respectively in PLSR prediction for superior-inferior direction. The results suggested that PLSR prediction was robust to variations, and clinically applicable accuracy could be achievable for targeting tumors.
Collapse
Affiliation(s)
- Kanako Ukon
- Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yohei Arai
- Graduate School of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seishin Takao
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Taeko Matsuura
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, North12, West 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Hiroki Shirato
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
- Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, North13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Miyamoto
- Corresponding author: Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8638, Japan. Tel: +81-11-706-6673, E-mail address:
| |
Collapse
|
9
|
Tanaka S, Miyamoto N, Matsuo Y, Yoshimura T, Takao S, Matsuura T. First experimental results of gated proton imaging using x-ray fluoroscopy to detect a fiducial marker. Phys Med Biol 2021; 66. [PMID: 34433146 DOI: 10.1088/1361-6560/ac212b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Increasing numbers of proton imaging research studies are being conducted for accurate proton range determination in proton therapy treatment planning. However, there is no proton imaging system that deals with motion artifacts. In this study, a gated proton imaging system was developed and the first experimental results of proton radiography (pRG) were obtained for a moving object without motion artifacts. A motion management system using dual x-ray fluoroscopy for detecting a spherical gold fiducial marker was introduced and the proton beam was gated in accordance with the motion of the object. To demonstrate the performance of the gated proton imaging system, gated pRG images of a moving phantom were acquired experimentally, and the motion artifacts clearly were diminished. Also, the factors causing image deteriorations were evaluated focusing on the new gating system developed here, and the main factor was identified as the latency (with a maximum value of 93 ms) between the ideal gating signal according to the actual marker position and the actual gating signal. The possible deterioration due to the latency of the proton imaging system and proton beam irradiation was small owing to appropriate setting of the time structure.
Collapse
Affiliation(s)
- Sodai Tanaka
- Institute for Quantum Medical Science, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuto Matsuo
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 060-8648, Japan
| | - Takaaki Yoshimura
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
10
|
Hayashi R, Miyazaki K, Takao S, Yokokawa K, Tanaka S, Matsuura T, Taguchi H, Katoh N, Shimizu S, Umegaki K, Miyamoto N. Real-time CT image generation based on voxel-by-voxel modeling of internal deformation by utilizing the displacement of fiducial markers. Med Phys 2021; 48:5311-5326. [PMID: 34260755 DOI: 10.1002/mp.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To show the feasibility of real-time CT image generation technique utilizing internal fiducial markers that facilitate the evaluation of internal deformation. METHODS In the proposed method, a linear regression model that can derive internal deformation from the displacement of fiducial markers is built for each voxel in the training process before the treatment session. Marker displacement and internal deformation are derived from the four-dimensional computed tomography (4DCT) dataset. In the treatment session, the three-dimensional deformation vector field is derived according to the marker displacement, which is monitored by the real-time imaging system. The whole CT image can be synthesized by deforming the reference CT image with a deformation vector field in real-time. To show the feasibility of the technique, image synthesis accuracy and tumor localization accuracy were evaluated using the dataset generated by extended NURBS-Based Cardiac-Torso (XCAT) phantom and clinical 4DCT datasets from six patients, containing 10 CT datasets each. In the validation with XCAT phantom, motion range of the tumor in training data and validation data were about 10 and 15 mm, respectively, so as to simulate motion variation between 4DCT acquisition and treatment session. In the validation with patient 4DCT dataset, eight CT datasets from the 4DCT dataset were used in the training process. Two excluded inhale CT datasets can be regarded as the datasets with large deformations more than training dataset. CT images were generated for each respiratory phase using the corresponding marker displacement. Root mean squared error (RMSE), normalized RMSE (NRMSE), and structural similarity index measure (SSIM) between the original CT images and the synthesized CT images were evaluated as the quantitative indices of the accuracy of image synthesis. The accuracy of tumor localization was also evaluated. RESULTS In the validation with XCAT phantom, the mean NRMSE, SSIM, and three-dimensional tumor localization error were 7.5 ± 1.1%, 0.95 ± 0.02, and 0.4 ± 0.3 mm, respectively. In the validation with patient 4DCT dataset, the mean RMSE, NRMSE, SSIM, and three-dimensional tumor localization error in six patients were 73.7 ± 19.6 HU, 9.2 ± 2.6%, 0.88 ± 0.04, and 0.8 ± 0.6 mm, respectively. These results suggest that the accuracy of the proposed technique is adequate when the respiratory motion is within the range of the training dataset. In the evaluation with a marker displacement larger than that of the training dataset, the mean RMSE, NRMSE, and tumor localization error were about 100 HU, 13%, and <2.0 mm, respectively, except for one case having large motion variation. The performance of the proposed method was similar to those of previous studies. Processing time to generate the volumetric image was <100 ms. CONCLUSION We have shown the feasibility of the real-time CT image generation technique for volumetric imaging.
Collapse
Affiliation(s)
- Risa Hayashi
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koichi Miyazaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kohei Yokokawa
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sodai Tanaka
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Norio Katoh
- Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Ono S, Ueda Y, Ohira S, Isono M, Sumida I, Inui S, Morimoto M, Ashida R, Miyazaki M, Ogawa K, Teshima T. Detectability of fiducials' positions for real-time target tracking system equipping with a standard linac for multiple fiducial markers. J Appl Clin Med Phys 2020; 21:153-162. [PMID: 33058408 PMCID: PMC7700931 DOI: 10.1002/acm2.13050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate the detectability of fiducial markers' positions for real-time target tracking system equipping with a standard linac. The hypothesis is that the detectability depends on the type of fiducial marker and the gantry angle of acquired triggered images. METHODS Three types of ball fiducials and four slim fiducials with lengths of 3 and 5 mm were prepared for this study. Triggered images with three similar fiducials were acquired at every 10° during the conformal arc irradiation to detect the target position. Although only one type of arrangement was prepared for the ball fiducials, a three-type arrangement was prepared for the slim fiducials, such as parallel, orthogonal, and oblique with 45° to the gantry-couch direction. To measure the detectability of the real-time target tracking system for each fiducial and arrangement, detected marker positions were compared with expected marker positions at every angle of acquired triggered images. RESULTS For the ball-type fiducial, the maximum difference between the detected marker positions and expected marker positions was 0.3 mm in all directions. For the slim fiducial arranged parallel and oblique with 45°, the maximum difference was 0.4 mm in all directions. When each slim fiducial was arranged orthogonal to the gantry-couch direction, the maximum difference was 1.5 mm for the length of 3 mm, and 3.2 mm for the length of 5 mm. CONCLUSIONS The detectability of fiducial markers' positions for the real-time target tracking system equipping with a standard linac depends on the form and insertion angles of the fiducials.
Collapse
Affiliation(s)
- Shunsuke Ono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaru Isono
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Morimoto
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Reiko Ashida
- Department of Cancer survey and gastrointestinal oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|