1
|
Jafari M, Shoeibi A, Khodatars M, Ghassemi N, Moridian P, Alizadehsani R, Khosravi A, Ling SH, Delfan N, Zhang YD, Wang SH, Gorriz JM, Alinejad-Rokny H, Acharya UR. Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review. Comput Biol Med 2023; 160:106998. [PMID: 37182422 DOI: 10.1016/j.compbiomed.2023.106998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. At early stages, CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMRI) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians as each scan has many slices of data, and the contrast of it might be low. To address these issues, deep learning (DL) techniques have been employed in the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. The following presents research to detect CVDs using CMR images and the most significant DL methods. Another section discussed the challenges in diagnosing CVDs from CMRI data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. Finally, the most important findings of this study are presented in the conclusion section.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Afshin Shoeibi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Data Science and Computational Intelligence Institute, University of Granada, Spain.
| | - Marjane Khodatars
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Navid Ghassemi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Parisa Moridian
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Australia
| | - Niloufar Delfan
- Faculty of Computer Engineering, Dept. of Artificial Intelligence Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Juan M Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Spain; Department of Psychiatry, University of Cambridge, UK
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; UNSW Data Science Hub, The University of New South Wales, Sydney, NSW, 2052, Australia; Health Data Analytics Program, Centre for Applied Artificial Intelligence, Macquarie University, Sydney, 2109, Australia
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Dept. of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation. Phys Med 2023; 107:102560. [PMID: 36878133 DOI: 10.1016/j.ejmp.2023.102560] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
PURPOSE Breast cancer is one of the major reasons of death due to cancer in women. Early diagnosis is the most critical key for disease screening, control, and reducing mortality. A robust diagnosis relies on the correct classification of breast lesions. While breast biopsy is referred to as the "gold standard" in assessing both the activity and degree of breast cancer, it is an invasive and time-consuming approach. METHOD The current study's primary objective was to develop a novel deep-learning architecture based on the InceptionV3 network to classify ultrasound breast lesions. The main promotions of the proposed architecture were converting the InceptionV3 modules to residual inception ones, increasing their number, and altering the hyperparameters. In addition, we used a combination of five datasets (three public datasets and two prepared from different imaging centers) for training and evaluating the model. RESULTS The dataset was split into the train (80%) and test (20%) groups. The model achieved 0.83, 0.77, 0.8, 0.81, 0.81, 0.18, and 0.77 for the precision, recall, F1 score, accuracy, AUC, Root Mean Squared Error, and Cronbach's α in the test group, respectively. CONCLUSIONS This study illustrates that the improved InceptionV3 can robustly classify breast tumors, potentially reducing the need for biopsy in many cases.
Collapse
|
3
|
Deep Learning Approaches for Automatic Localization in Medical Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6347307. [PMID: 35814554 PMCID: PMC9259335 DOI: 10.1155/2022/6347307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
Recent revolutionary advances in deep learning (DL) have fueled several breakthrough achievements in various complicated computer vision tasks. The remarkable successes and achievements started in 2012 when deep learning neural networks (DNNs) outperformed the shallow machine learning models on a number of significant benchmarks. Significant advances were made in computer vision by conducting very complex image interpretation tasks with outstanding accuracy. These achievements have shown great promise in a wide variety of fields, especially in medical image analysis by creating opportunities to diagnose and treat diseases earlier. In recent years, the application of the DNN for object localization has gained the attention of researchers due to its success over conventional methods, especially in object localization. As this has become a very broad and rapidly growing field, this study presents a short review of DNN implementation for medical images and validates its efficacy on benchmarks. This study presents the first review that focuses on object localization using the DNN in medical images. The key aim of this study was to summarize the recent studies based on the DNN for medical image localization and to highlight the research gaps that can provide worthwhile ideas to shape future research related to object localization tasks. It starts with an overview on the importance of medical image analysis and existing technology in this space. The discussion then proceeds to the dominant DNN utilized in the current literature. Finally, we conclude by discussing the challenges associated with the application of the DNN for medical image localization which can drive further studies in identifying potential future developments in the relevant field of study.
Collapse
|
4
|
Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol 2021; 65:545-563. [PMID: 34145766 DOI: 10.1111/1754-9485.13261] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022]
Abstract
Research in artificial intelligence for radiology and radiotherapy has recently become increasingly reliant on the use of deep learning-based algorithms. While the performance of the models which these algorithms produce can significantly outperform more traditional machine learning methods, they do rely on larger datasets being available for training. To address this issue, data augmentation has become a popular method for increasing the size of a training dataset, particularly in fields where large datasets aren't typically available, which is often the case when working with medical images. Data augmentation aims to generate additional data which is used to train the model and has been shown to improve performance when validated on a separate unseen dataset. This approach has become commonplace so to help understand the types of data augmentation techniques used in state-of-the-art deep learning models, we conducted a systematic review of the literature where data augmentation was utilised on medical images (limited to CT and MRI) to train a deep learning model. Articles were categorised into basic, deformable, deep learning or other data augmentation techniques. As artificial intelligence models trained using augmented data make their way into the clinic, this review aims to give an insight to these techniques and confidence in the validity of the models produced.
Collapse
Affiliation(s)
- Phillip Chlap
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Hang Min
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,The Australian e-Health and Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Nym Vandenberg
- Institute of Medical Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Dowling
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,The Australian e-Health and Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Lois Holloway
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia.,Institute of Medical Physics, University of Sydney, Sydney, New South Wales, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Annette Haworth
- Institute of Medical Physics, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|