1
|
Hadid-Beurrier L, Geryes BH, Jean-Pierre A, Gaudin PA, Feghali JA. Clinical benchmarking of a commercial software for skin dose estimation in cardiac, abdominal, and neurology interventional procedures. Med Phys 2024; 51:3687-3697. [PMID: 38277471 DOI: 10.1002/mp.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Radiation exposure from interventional radiology (IR) could lead to potential risk of skin injury in patients. Several dose monitoring software like radiation dose monitor (RDM) were developed to estimate the patient skin dose (PSD) distribution in IR. PURPOSE This study benchmarked the accuracy of RDM software in estimating PSD as compared to GafChromic film baseline in-vivo measurements on patients during cardiac, abdominal, and neurology IR procedures. METHODS The prospective study conducted in four IR departments included 81 IR procedures (25 cardiac, 31 abdominal, and 25 neurology procedures) on three angiographic systems. PSD and field geometry were measured by placing GafChromic film under the patient's back. Statistical analyses were performed to compare the software estimation and film measurement results in terms of PSD and geometric accuracy. RESULTS Median values of measured/calculated PSD were 1140/1005, 591/655.9, and 538/409.7 mGy for neurology, cardiac, and abdominal procedures, respectively. For all angiographic systems, the median (InterQuartile Range, IQR) difference between calculated and measured PSD was -10.2% (-21.8%-5.7%) for neurology, -4.5% (-19.5%-15.5%) for cardiac, and -21.9% (-38.7%--3.6%) for abdominal IR procedures. These differences were not significant for all procedures (p > 0.05). Discrepancies increased up to -82% in lower dose regions where the measurement uncertainties are higher. Regarding the geometric accuracy, RDM correctly reproduced the skin dose map and estimated PSD area dimensions closely matched those registered on films with a median (IQR) difference of 0 cm (-1-0.8 cm). CONCLUSIONS RDM is proved to be a useful solution for the estimation of PSD and skin dose distribution during abdominal, cardiac and neurology IR procedures despite a geometry phantom which is not specific to the latter type of IR procedures.
Collapse
Affiliation(s)
- Lama Hadid-Beurrier
- Medical Physics and Radiation Protection Department, APHP Lariboisière University Hospital, Paris, France
| | - Bouchra Habib Geryes
- Radiology Department, APHP Necker-Enfants Malades University Hospital, Paris, France
| | - Antonella Jean-Pierre
- Medical Physics and Radiation Protection Department, APHP Lariboisière University Hospital, Paris, France
| | - Paul-Adrien Gaudin
- URC Lariboisière-Saint Louis, Hôpital Fernand Widal, PARIS Cedex, France
| | | |
Collapse
|
2
|
Buranurak S, Pong-Inwong V, Hanpanich P, Wongwiwatchai J, Ahooja A, Pungkun V. Al2O3:C optically stimulated luminescence dosimetry for evaluation of potential factors contributing to entrance skin doses received by liver cancer patients undergoing Transarterial Chemoembolization. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Manicardi M, Nocetti L, Brigidi A, Cadioli C, Sgreccia D, Valenti AC, Vitolo M, Arrotti S, Monopoli DE, Sgura F, Rossi R, Guidi G, Boriani G. Anthropometric parameters and radiation doses during percutaneous coronary procedures. Phys Med 2022; 100:164-175. [PMID: 35901630 DOI: 10.1016/j.ejmp.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Body size is a major determinant of patient's dose during percutaneous coronary interventions (PCI). Body mass index, body surface area (BSA), lean body mass and weight are commonly used estimates for body size. We aim to identify which of these measures and which procedural/clinical characteristics can better predict received dose. METHODS Dose area product (DAP, Gycm2), fluoroscopy DAP rate (Gycm2/min), fluoroscopy DAP (Gycm2), cine-angiography DAP (Gycm2), Air Kerma (mGy) were selected as indices of patient radiation dose. Different clinical/procedural variables were analysed in multiple linear regression models with previously mentioned patient radiation dose parameters as end points. The best model for each of them was identified. RESULTS Overall 6623 PCI were analysed, median fluoroscopy DAP rate was 35 [IQR 2.7,4.4] Gycm2, median total DAP was 62.7 [IQR 38.1,107] Gycm2. Among all anthropometric variables, BSA showed the best correlation with all radiation dose parameters considered. Every 1 m2 increment in BSA added 4.861 Gycm2/min (95% CI [4.656, 5.067]) to fluoroscopy DAP rate and 164 Gycm2 (95% CI [145.3, 182.8]) to total DAP. Height and female sex were significantly associated to a reduction in fluoroscopy DAP rate and total DAP. Coronary angioplasty, diabetes, basal creatinine and the number of treated vessels were associated to higher values. CONCLUSIONS Main determinants of patient radiation dose are: BSA, female sex, height and number of treated vessels. In an era of increasing PCI complexity and obesity prevalence, these results can help clinicians tailoring X-ray administration to patient's size.
Collapse
Affiliation(s)
- Marcella Manicardi
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Luca Nocetti
- Medical Physics Unit, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Alessio Brigidi
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Cecilia Cadioli
- Medical Physics Unit, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Daria Sgreccia
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Anna Chiara Valenti
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Marco Vitolo
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Salvatore Arrotti
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Daniel Enrique Monopoli
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Fabio Sgura
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Rosario Rossi
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Gabriele Guidi
- Medical Physics Unit, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy.
| |
Collapse
|
4
|
Vano E, Loose R, Frija G, Paulo G, Efstathopoulos E, Granata C, Corridori R, Torresin A, Andersson JS, Tsapaki V, Ammon J, Hoeschen C. Notifications and alerts in patient dose values for computed tomography and fluoroscopy-guided interventional procedures. Eur Radiol 2022; 32:5525-5531. [PMID: 35294584 PMCID: PMC9279248 DOI: 10.1007/s00330-022-08675-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/04/2022]
Abstract
The terms "notifications" and "alerts" for medical exposures are used by several national and international organisations. Recommendations for CT scanners have been published by the American Association of Physicists in Medicine. Some interventional radiology societies as well as national authorities have also published dose notifications for fluoroscopy-guided interventional procedures. Notifications and alerts may also be useful for optimisation and to avoid unintended and accidental exposures. The main interest in using these values for high-dose procedures (CT and interventional) is to optimise imaging procedures, reducing the probability of stochastic effects and avoiding tissue reactions. Alerts in X-ray systems may be considered before procedures (as in CT), during procedures (in some interventional radiology systems), and after procedures, when the patient radiation dose results are known and processed. This review summarises the different uses of notifications and alerts to help in optimisation for CT and for fluoroscopy-guided interventional procedures as well as in the analysis of unintended and accidental medical exposures. The paper also includes cautions in setting the alert values and discusses the benefits of using patient dose management systems for the alerts, their registry and follow-up, and the differences between notifications, alerts, and trigger levels for individual procedures and the terms used for the collective approach, such as diagnostic reference levels. KEY POINTS: • Notifications and alerts on patient dose values for computed tomography (CT) and fluoroscopy-guided interventional procedures (FGIP) allow to improve radiation safety and contribute to the avoidance of radiation injuries and unintended and accidental exposures. • Alerts may be established before the imaging procedures (as in CT) or during and after the procedures as for FGIP. • Dose management systems should include notifications and alerts and their registry for the hospital quality programmes.
Collapse
Affiliation(s)
- Eliseo Vano
- Radiology Department, Complutense University, 28040, Madrid, Spain.
| | - Reinhard Loose
- Institute of Medical Physics, Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| | - Guy Frija
- Université de Paris, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Graciano Paulo
- Medical Imaging and Radiotherapy Department, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854, Coimbra, Portugal
| | - Efstathios Efstathopoulos
- Department of Radiology, Medical Physics Unit, National and Kapodistrian University of Athens, Attikon University Hospital, 12462, Athens, Greece
| | - Claudio Granata
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | | | | | | | - Virginia Tsapaki
- Medical Physics, Konstantopoulio General Hospital, Nea Ionia, Greece
| | - Josefin Ammon
- Institute of Medical Physics, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Christoph Hoeschen
- Institut Für Medizintechnik, Otto-Von-Guericke Universität, Magdeburg, Germany
| | | |
Collapse
|
5
|
Ria F, D’Ercole L, Origgi D, Paruccini N, Pierotti L, Rampado O, Rossetti V, Strocchi S, Torresin A, Torresin A, Pierotti L, Belli G, Bregant P, Isoardi P, Mari A, Nitrosi A, Nocetti L, Paruccini N, Quattrocchi MG, Radice A, Rampado O, Scrittori N, Sottocornola C, Strocchi S, Sutto M, Zatelli G, Acchiappati D, Aoja RA, Brambilla M, Branchini M, Cannatà V, Costi T, Cutaia C, D.’Ercole L, Del Vecchio A, Delle Canne S, Di Pasquale M, Elisabetta S, Fabbri C, Faico MD, Fantinato D, Ghetti C, Giannelli M, Giordano C, Grisotto S, Guidi G, Lisciandro F, Manco L, Giorgio Marini P, Moresco P, Oberhofer N, Origgi D, Palleri F, Pasquali C, Pasquino M, Peruzzo A, Petrillo G, Pini S, Rembado D, Ria F, Riccardi L, Rosasco R, Serelli G, Soavi R, Stasi M, Taddeucci A, Tonini E, Trianni A, Turano P, Venturi G, Zefiro D, Zito F. Statement of the Italian Association of Medical Physics (AIFM) task group on radiation dose monitoring systems. Insights Imaging 2022; 13:23. [PMID: 35124735 PMCID: PMC8818083 DOI: 10.1186/s13244-022-01155-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
The evaluation of radiation burden in vivo is crucial in modern radiology as stated also in the European Directive 2013/59/Euratom—Basic Safety Standard. Although radiation dose monitoring can impact the justification and optimization of radiological procedure, as well as effective patient communication, standardization of radiation monitoring software is far to be achieved. Toward this goal, the Italian Association of Medical Physics (AIFM) published a report describing the state of the art and standard guidelines in radiation dose monitoring system quality assurance. This article reports the AIFM statement about radiation dose monitoring systems (RDMSs) summarizing the different critical points of the systems related to Medical Physicist Expert (MPE) activities before, during, and after their clinical implementation. In particular, the article describes the general aspects of radiation dose data management, radiation dose monitoring systems, data integrity, and data responsibilities. Furthermore, the acceptance tests that need to be implemented and the most relevant dosimetric data for each radiological modalities are reported under the MPE responsibility.
Collapse
|
6
|
Greffier J, Belaouni A, Dabli D, Goupil J, Perolat R, Akessoul P, Kammoun T, Hoballah A, Beregi JP, Frandon J. Comparison of peak skin dose and dose map obtained with real-time software and radiochromic films in patients undergoing abdominopelvic embolization. Diagn Interv Imaging 2022; 103:338-344. [DOI: 10.1016/j.diii.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
|
7
|
Fernández-Bosman D, von Barnekow A, Dabin J, Malchair F, Vanhavere F, Amor Duch M, Ginjaume M. Validation of organ dose calculations with PyMCGPU-IR in realistic interventional set-ups. Phys Med 2021; 93:29-37. [PMID: 34920380 DOI: 10.1016/j.ejmp.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Interventional radiology procedures are associated with high skin dose exposure. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. This work presents and validates PyMCGPU-IR, a patient dose monitoring tool for interventional cardiology and radiology procedures based on MC-GPU. MC-GPU is a freely available Monte Carlo (MC) code of photon transport in a voxelized geometry which uses the computational power of commodity Graphics Processing Unit cards (GPU) to accelerate calculations. METHODOLOGIES PyMCGPU-IR was validated against two different experimental set-ups. The first one consisted of skin dose measurements for different beam angulations on an adult Rando Alderson anthropomorphic phantom. The second consisted of organ dose measurements in three clinical procedures using the Rando Alderson phantom. RESULTS The results obtained for the skin dose measurements show differences below 6%. For the clinical procedures the differences are within 20% for most cases. CONCLUSIONS PyMCGPU-IR offers both, high performance and accuracy for dose assessment when compared with skin and organ dose measurements. It also allows the calculation of dose values at specific positions and organs, the dose distribution and the location of the maximum doses per organ. In addition, PyMCGPU-IR overcomes the time limitations of CPU-based MC codes.
Collapse
Affiliation(s)
| | - Ariel von Barnekow
- Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Jérémie Dabin
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | | | - Filip Vanhavere
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Maria Amor Duch
- Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Mercè Ginjaume
- Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Krajinović M, Vujisić M, Ciraj-Bjelac O. UNCERTAINTY ASSOCIATED WITH THE USE OF SOFTWARE SOLUTIONS UTILIZING DICOM RDSR FOR SKIN DOSE ASSESSMENT IN INTERVENTIONAL RADIOLOGY AND CARDIOLOGY. RADIATION PROTECTION DOSIMETRY 2021; 196:129-135. [PMID: 34580734 DOI: 10.1093/rpd/ncab146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE The purpose of this work is to provide a comprehensive analysis of uncertainties associated with the use of software solutions utilizing DICOM RDSRs for skin dose assessment in the interventional fluoroscopic environment. METHODS AND RESULTS Three different scenarios have been defined for determining the overall uncertainty, each with a specific assumption on the maximum deviations of factors affecting the calculated dose. Relative expanded uncertainty has been calculated using two approaches: the law of propagation of uncertainty and the propagation of distributions based on the Monte Carlo method. According to the propagation of uncertainty, it is estimated that the lowest possible relative expanded uncertainty of ~13% (at the 95% level of confidence, i.e. with the coverage factor of k = 2 assuming normal distribution) could only be achieved if all sources of uncertainties are carefully controlled, whereas maximum relative expanded uncertainty could reach up to 61% if none of the influencing parameters are controlled properly. When the influencing parameters are reasonably well-controlled, realistic relative expanded uncertainty amounts to 28%. Values for the relative expanded uncertainty obtained from the Monte Carlo propagation of distributions concur with the results obtained from the propagation of uncertainty to within 3% in all three considered scenarios, validating the assumption of normality. CONCLUSIONS The overall skin dose relative uncertainty has been found to range from 13 to 61%, emphasizing the importance of adequate analysis and control of all relevant uncertainty sources.
Collapse
Affiliation(s)
- Marko Krajinović
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
- "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Vujisić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Olivera Ciraj-Bjelac
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
- "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Papanastasiou E, Protopsaltis A, Finitsis S, Hatzidakis A, Prassopoulos P, Siountas A. Institutional Diagnostic Reference Levels and Peak Skin Doses in selected diagnostic and therapeutic interventional radiology procedures. Phys Med 2021; 89:63-71. [PMID: 34352677 DOI: 10.1016/j.ejmp.2021.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Institutional (local) Diagnostic Reference Levels for Cerebral Angiography (CA), Percutaneous Transhepatic Cholangiography (PTC), Transarterial Chemoembolization (TACE) and Percutaneous Transhepatic Biliary Drainage (PTBD) are reported in this study. MATERIALS AND METHODS Data for air kerma-area product (PKA), air kerma at the patient entrance reference point (Ka,r), fluoroscopy time (FT) and number of images (NI) as well as estimates of Peak Skin Dose (PSD) were collected for 142 patients. Therapeutic procedure complexity was also evaluated, in an attempt to incorporate it into the DRL analysis. RESULTS Local PKA DRL values were 70, 34, 189 and 54 Gy.cm2 for CA, PTC, TACE and PTBD respectively. The corresponding DRL values for Ka,r were 494, 194, 1186 and 400 mGy, for FT they were 9.2, 14.2, 27.5 and 22.9 min, for the NI they were 844, 32, 602 and 13 and for PSD they were 254, 256, 1598 and 540 mGy respectively. PKA for medium complexity PTBD procedures was 2.5 times higher than for simple procedures. For TACE, the corresponding ratio was 1.6. PSD was estimated to be roughly 50% of recorded Ka,r for procedures in the head/neck region and 10% higher than recorded Ka,r for procedures in the body region. In only 5 cases the 2 Gy dose alarm threshold for skin deterministic effects was exceeded. CONCLUSION Procedure complexity can differentiate DRLs in Interventional Radiology procedures. PSD could be deduced with reasonable accuracy from values of Ka,r that are reported in every angiography system.
Collapse
Affiliation(s)
- Emmanouil Papanastasiou
- Medical Physics Laboratory, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| | - Athanasios Protopsaltis
- Medical Physics Laboratory, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Stefanos Finitsis
- Department of Radiology, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Adam Hatzidakis
- Department of Radiology, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Panos Prassopoulos
- Department of Radiology, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Anastasios Siountas
- Medical Physics Laboratory, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
10
|
Andersson J, Bednarek DR, Bolch W, Boltz T, Bosmans H, Gislason-Lee AJ, Granberg C, Hellstrom M, Kanal K, McDonagh E, Paden R, Pavlicek W, Khodadadegan Y, Torresin A, Trianni A, Zamora D. Estimation of patient skin dose in fluoroscopy: summary of a joint report by AAPM TG357 and EFOMP. Med Phys 2021; 48:e671-e696. [PMID: 33930183 DOI: 10.1002/mp.14910] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/04/2021] [Accepted: 04/23/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Physicians use fixed C-arm fluoroscopy equipment with many interventional radiological and cardiological procedures. The associated effective dose to a patient is generally considered low risk, as the benefit-risk ratio is almost certainly highly favorable. However, X-ray-induced skin injuries may occur due to high absorbed patient skin doses from complex fluoroscopically guided interventions (FGI). Suitable action levels for patient-specific follow-up could improve the clinical practice. There is a need for a refined metric regarding follow-up of X-ray-induced patient injuries and the knowledge gap regarding skin dose-related patient information from fluoroscopy devices must be filled. The most useful metric to indicate a risk of erythema, epilation or greater skin injury that also includes actionable information is the peak skin dose, that is, the largest dose to a region of skin. MATERIALS AND METHODS The report is based on a comprehensive review of best practices and methods to estimate peak skin dose found in the scientific literature and situates the importance of the Digital Imaging and Communication in Medicine (DICOM) standard detailing pertinent information contained in the Radiation Dose Structured Report (RDSR) and DICOM image headers for FGI devices. Furthermore, the expertise of the task group members and consultants have been used to bridge and discuss different methods and associated available DICOM information for peak skin dose estimation. RESULTS The report contributes an extensive summary and discussion of the current state of the art in estimating peak skin dose with FGI procedures with regard to methodology and DICOM information. Improvements in skin dose estimation efforts with more refined DICOM information are suggested and discussed. CONCLUSIONS The endeavor of skin dose estimation is greatly aided by the continuing efforts of the scientific medical physics community, the numerous technology enhancements, the dose-controlling features provided by the FGI device manufacturers, and the emergence and greater availability of the DICOM RDSR. Refined and new dosimetry systems continue to evolve and form the infrastructure for further improvements in accuracy. Dose-related content and information systems capable of handling big data are emerging for patient dose monitoring and quality assurance tools for large-scale multihospital enterprises.
Collapse
Affiliation(s)
- Jonas Andersson
- Department of Radiation Sciences, Radiation Physics, Umeå University, SE-901 85, Umeå, Sweden
| | - Daniel R Bednarek
- State University of New York, 875 Ellicott St, Buffalo, NY, 14203-1070, USA
| | - Wesley Bolch
- University of Florida, 1275 Center Drive, Gainesville, FL, 32611-6131, USA
| | - Thomas Boltz
- Orange Factor Imaging Physicists, 4035 E Captain Dreyfus Ave, Phoenix, AZ, 85032, USA
| | - Hilde Bosmans
- University of Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | | | - Christoffer Granberg
- Department of Radiation Sciences, Radiation Physics, Umeå University, SE-901 85, Umeå, Sweden
| | - Max Hellstrom
- Department of Radiation Sciences, Radiation Physics, Umeå University, SE-901 85, Umeå, Sweden
| | - Kalpana Kanal
- University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Ed McDonagh
- Joint Department of Physics, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Robert Paden
- Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | | | - Yasaman Khodadadegan
- Progressive Insurance, Customer Relation Management, 6300 Wilson Mills Rd., Mayfield Village, OH, 44143, USA
| | - Alberto Torresin
- Niguarda Ca'Granda Hospital, Via Leon Battista Alberti 5, Milano, 20149, Italy
| | - Annalisa Trianni
- Udine University Hospital, Piazzale S. Maria Della Misericordia, n. 15, 33100, Udine, Italy
| | - David Zamora
- University of Washington Medical Center, 6852 31st Ave NE, Seattle, WA, 98115-7245, USA
| |
Collapse
|
11
|
Fum WKS, Wong JHD, Tan LK. Monte Carlo-based patient internal dosimetry in fluoroscopy-guided interventional procedures: A review. Phys Med 2021; 84:228-240. [PMID: 33849785 DOI: 10.1016/j.ejmp.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This systematic review aims to understand the dose estimation approaches and their major challenges. Specifically, we focused on state-of-the-art Monte Carlo (MC) methods in fluoroscopy-guided interventional procedures. METHODS All relevant studies were identified through keyword searches in electronic databases from inception until September 2020. The searched publications were reviewed, categorised and analysed based on their respective methodology. RESULTS Hundred and one publications were identified which utilised existing MC-based applications/programs or customised MC simulations. Two outstanding challenges were identified that contribute to uncertainties in the virtual simulation reconstruction. The first challenge involves the use of anatomical models to represent individuals. Currently, phantom libraries best balance the needs of clinical practicality with those of specificity. However, mismatches of anatomical variations including body size and organ shape can create significant discrepancies in dose estimations. The second challenge is that the exact positioning of the patient relative to the beam is generally unknown. Most dose prediction models assume the patient is located centrally on the examination couch, which can lead to significant errors. CONCLUSION The continuing rise of computing power suggests a near future where MC methods become practical for routine clinical dosimetry. Dynamic, deformable phantoms help to improve patient specificity, but at present are only limited to adjustment of gross body volume. Dynamic internal organ displacement or reshaping is likely the next logical frontier. Image-based alignment is probably the most promising solution to enable this, but it must be automated to be clinically practical.
Collapse
Affiliation(s)
- Wilbur K S Fum
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; Division of Radiological Sciences, Singapore General Hospital, Outram Rd, Singapore 169608, Singapore.
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Li Kuo Tan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
12
|
Dabin J, Blidéanu V, Ciraj Bjelac O, Deleu M, De Monte F, Feghali JA, Gallagher A, Knežević Ž, Maccia C, Malchair F, Sans Merce M, Simantirakis G. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med 2021; 82:279-294. [PMID: 33706118 DOI: 10.1016/j.ejmp.2021.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Online and offline software products can estimate the maximum skin dose (MSD) delivered to the patient during interventional cardiology procedures. The capabilities and accuracy of several skin dose mapping (SDM) software products were assessed on X-ray systems from the main manufacturers following a common protocol. METHODS Skin dose was measured on four X-ray systems following a protocol composed of nine fundamental irradiation set-ups and three set-ups simulating short, clinical procedures. Dosimeters/multimeters with semiconductor-based detectors, radiochromic films and thermoluminescent dosimeters were used. Results were compared with up to eight of 10 SDM products, depending on their compatibility. RESULTS The MSD estimates generally agreed with the measurements within ± 40% for fundamental irradiation set-ups and simulated procedures. Only three SDM products provided estimates within ± 40% for all tested configurations on at least one compatible X-ray system. No SDM product provided estimates within ± 40% for all combinations of configurations and compatible systems. The accuracy of the MSD estimate for lateral irradiations was variable and could be poor (up to 66% underestimation). Most SDM products produced maps which qualitatively represented the dimensions, the shape and the relative position of the MSD region. Some products, however, missed the MSD region when situated at the intersection of multiple fields, which is of radiation protection concern. CONCLUSIONS It is very challenging to establish a common protocol for quality control (QC) and acceptance testing because not all information necessary for accurate MSD calculation is available or standardised in the radiation dose structured reports (RDSRs).
Collapse
Affiliation(s)
- Jérémie Dabin
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium.
| | - Valentin Blidéanu
- Commissariat à l'Energie Atomique (CEA), CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Olivera Ciraj Bjelac
- University of Belgrade, Vinca Institute of Nuclear Sciences and School of Electrical Engineering (VINCA), M .P. Alasa 12-14, 11351 Vinca, Serbia
| | - Marine Deleu
- University Hospital of Geneva (HUG), Rue Gabrielle Perret Gentil 4, 1205 Geneva, Switzerland; University Hospital of Lausanne (CHUV), Rue du Grand Pré 1, 1007 Lausanne, Switzerland
| | - Francesca De Monte
- Veneto Institute of Oncology IOV - IRCCS (IOV), Via Gattamelata 64, 35128 Padua, Italy
| | - Joëlle Ann Feghali
- Department of Radiology, Bicêtre University Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Aoife Gallagher
- University Hospital Limerick (UHL), St. Nessan's Road, Dooradoyle, V94135 Limerick, Ireland
| | - Željka Knežević
- Ruđer Bošković Institute (RBI), Bijenicka 54, 10000 Zagreb, Croatia
| | - Carlo Maccia
- Centre d'Assurance de qualité des Applications Technologiques dans le domaine de la Santé (CAATS), 119-121 Grande Rue, 92310 Sèvres, France
| | - Françoise Malchair
- Centre d'Assurance de qualité des Applications Technologiques dans le domaine de la Santé (CAATS), 119-121 Grande Rue, 92310 Sèvres, France
| | - Marta Sans Merce
- University Hospital of Geneva (HUG), Rue Gabrielle Perret Gentil 4, 1205 Geneva, Switzerland; University Hospital of Lausanne (CHUV), Rue du Grand Pré 1, 1007 Lausanne, Switzerland
| | - George Simantirakis
- Greek Atomic Energy Commission (EEAE), P. Grigoriou & Neapoleos, 15341 Athens, Greece
| |
Collapse
|
13
|
Krajinović M, Kržanović N, Ciraj‐Bjelac O. Vendor-independent skin dose mapping application for interventional radiology and cardiology. J Appl Clin Med Phys 2021; 22:145-157. [PMID: 33440056 PMCID: PMC7882120 DOI: 10.1002/acm2.13167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The purpose of this paper is to present and validate an originally developed application SkinCare used for skin dose mapping in interventional procedures, which are associated with relatively high radiation doses to the patient's skin and possible skin reactions. METHODS SkinCare is an application tool for generating skin dose maps following interventional radiology and cardiology procedures using the realistic 3D patient models. Skin dose is calculated using data from Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Reports (RDSRs). SkinCare validation was performed by using the data from the Siemens Artis Zee Biplane fluoroscopy system and conducting "Acceptance and quality control protocols for skin dose calculating software solutions in interventional cardiology" developed and tested in the frame of the VERIDIC project. XR-RV3 Gafchromic films were used as dosimeters to compare peak skin doses (PSDs) and dose maps obtained through measurements and calculations. DICOM RDSRs from four fluoroscopy systems of different vendors (Canon, GE, Philips, and Siemens) were used for the development of the SkinCare and for the comparison of skin dose maps generated using SkinCare to skin dose maps generated by different commercial software tools (Dose Tracking System (DTS) from Canon, RadimetricsTM from Bayer and RDM from MEDSQUARE). The same RDSRs generated during a cardiology clinical procedure (percutaneous coronary intervention-PCI) were used for comparison. RESULTS Validation performed using VERIDIC's protocols for skin dose calculation software showed that PSD calculated by SkinCare is within 17% and 16% accuracy compared to measurements using XR-RV3 Gafchromic films for fundamental irradiation setups and simplified clinical procedures, respectively. Good visual agreement between dose maps generated by SkinCare and DTS, RadimetricsTM and RDM was obtained. CONCLUSIONS SkinCare is proved to be very convenient solution that can be used for monitoring delivered dose following interventional procedures.
Collapse
Affiliation(s)
- Marko Krajinović
- School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
- „VINČA" Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Nikola Kržanović
- School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
- „VINČA" Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Olivera Ciraj‐Bjelac
- School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
- „VINČA" Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
14
|
Colombo P, Felisi M, Riga S, Torresin A. On skin dose estimation software in interventional radiology. Phys Med 2021; 81:182-184. [DOI: 10.1016/j.ejmp.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022] Open
|
15
|
Malchair F, Dabin J, Deleu M, Merce MS, Bjelac OC, Gallagher A, Maccia C. Review of skin dose calculation software in interventional cardiology. Phys Med 2020; 80:75-83. [DOI: 10.1016/j.ejmp.2020.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
|
16
|
Choi TW, Chung JW, Cha BK, Choi KN, Park S, Son JW, Choi CH. Feasibility of dosimetric measurements using Al2O3:C OSL dosimeter during fluoroscopy-guided procedures. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:1346-1361. [PMID: 33027779 DOI: 10.1088/1361-6498/abbf3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the feasibility of dosimetric measurements using Al2O3:C optically stimulated luminescence (OSL) dosimeters during fluoroscopy-guided procedures. The linearity and energy dependence of Al2O3:C OSL dosimeters were evaluated, and the air kerma rate at the operator's position was measured. The response of Al2O3:C OSL dosimeters to short, repetitive irradiations was compared to that of long uninterrupted irradiation. The change in response of the Al2O3:C OSL dosimeter under automatic exposure rate control (AERC) was evaluated with the use of various thicknesses of polymethyl-methacrylate (PMMA) plates (15-30 cm). The Al2O3:C OSL dosimeters could detect 5µGy and showed good linearity in doses of ≥10µGy (R2: 0.997-0.999,p< 0.001). The relative response of the Al2O3:C OSL dosimeter normalised to that of 36.8 keV was 0.828-1.101 at the energies investigated (30.6-46.0 keV). The air kerma rate at the operator's position was estimated to be 2.61-7.17µGy min-1depending on the heights representing different body parts. Repetitive short irradiations had no significant impact on the relative response of the Al2O3:C OSL dosimeters (p> 0.05). Despite a high energy dependence on the low energy beam used in fluoroscopy, the change in relative response of the Al2O3:C OSL dosimeter under AERC was within 5.7% depending on the thickness of the PMMA plates. Dosimetric measurement using Al2O3:C OSL dosimeters for patients and operators is feasible. However, one should be cautious about high standard deviations when measuring small doses of ≤20µGy using Al2O3:C OSL dosimeters. It is essential to perform intensive bleaching before measuring very small doses to minimise pre-irradiation counts.
Collapse
Affiliation(s)
- Tae Won Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bo Kyung Cha
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Kwang Nam Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sohyeon Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Woo Son
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|