1
|
Li J, Cui X, Liu L, Li B, Fei Z, Han W. Proton dose deposition in heterogeneous media: A TOPAS Monte Carlo simulation study. Appl Radiat Isot 2025; 217:111665. [PMID: 39798271 DOI: 10.1016/j.apradiso.2025.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
This study investigated the influence of tissue electron density on proton beam dose distribution using TOPAS Monte Carlo simulation. Heterogeneous tissue models composed of 14 materials were constructed to simulate the dose deposition process of a 169.23 MeV proton beam. The study analyzed the relationships between electron density and key parameters such as maximum dose, total dose, and dose distribution. Results showed that increasing electron density led to higher local maximum dose, lower total dose, and decreased Bragg peak depth, range, penumbra width, and full width at half maximum (FWHM). High-density tissues caused a sharp, concentrated Bragg peak at shallower depths, while low-density tissues caused a backward shift and widening of the Bragg peak. Differences in proton energy deposition in various tissues were the fundamental reasons for dose distribution variations. This study quantified the relationship between electron density and proton beam dose distribution, providing a reference for accurate dose calculation and optimization in proton therapy.
Collapse
Affiliation(s)
- Jie Li
- University of Science and Technology of China, Hefei, Anhui, 230026, China; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xiangli Cui
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Lingling Liu
- University of Science and Technology of China, Hefei, Anhui, 230026, China; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Bingbing Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Radiotherapy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Zhenle Fei
- Department of Oncology, The 901th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Hefei, Anhui, 230031, China
| | - Wei Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
2
|
Sun W, Wang W, Huang Z, Zhao J. Commissioning of a commercial treatment planning system for scanned carbon-ion radiotherapy. J Appl Clin Med Phys 2024:e14580. [PMID: 39611885 DOI: 10.1002/acm2.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE To commission the RayStation (RS) TPS (treatment planning system) for scanned CIRT (carbon-ion radiotherapy) utilizing pencil beam algorithms (PBv4.2). METHODS The beam model commissioning entailed employing 1D single beams and 2D monoenergetic fields to validate spot profiles with films, assess beam range using Peakfinder measurements, and evaluate fragment spectra through dose-averaged linear energy transfer (LETd) calculations. 3D dose distributions were verified in homogeneous phantoms for both absorbed and relative biological effectiveness (RBE)-weighted doses, and further assessed in double wedge and anthropomorphic phantoms for absorbed dose only. Finally, RBE-weighted dose verification and patient-specific quality assurance were conducted using 58 beams from 20 clinically treated patient plans. RESULTS The results demonstrated good agreement in absolute dose distribution between TPS calculations and measurements, with mean dose discrepancies within 3%. However, deviations were slightly higher (> 1%) for the cases involving the range shifter (RaShi) compared to those without the RaShi (< 1%). Beam range, depth dose distribution, and lateral profiles of spread-out Bragg peaks (SOBPs) closely matched between RS TPS calculations and measurements. Some discrepancies (less than 0.5 mm) were observed at field edges and in penumbra regions due to limitations in simulating asymmetrical spots, but within clinical tolerance. After model tuning, RBE-weighted dose calculations in RS TPS were in agreement with those from the clinically used TPS, except for variations exceeding 3% observed at energies exceeding 408.07 MeV/u, primarily attributed to fragment spectra differences. CONCLUSION Overall, this study validated the RS TPS for calculating absorbed doses against measurements and RBE-weighted doses against a clinically used TPS. The results suggested that the RS TPS could be utilized for CIRT treatment planning, except for energies exceeding 408.07 MeV/u.
Collapse
Affiliation(s)
- Wei Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, China
| | - Zhijie Huang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| |
Collapse
|
3
|
Callens D, Aerts K, Berkovic P, Vandewinckele L, Lambrecht M, Crijns W. Are offline ART decisions for NSCLC impacted by the type of dose calculation algorithm? Tech Innov Patient Support Radiat Oncol 2024; 29:100236. [PMID: 38313556 PMCID: PMC10835600 DOI: 10.1016/j.tipsro.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Decisions for plan-adaptations may be impacted by a transitioning from one dose-calculation algorithm to another. This study examines the impact on dosimetric-triggered offline adaptation in LA-NSCLC in the context of a transition from superposition/convolution dose calculation algorithm (Type-B) to linear Boltzmann equation solver dose calculation algorithms (Type-C). Materials & Methods Two dosimetric-triggered offline adaptive treatment workflows are compared in a retrospective planning study on 30 LA-NSCLC patients. One workflow uses a Type-B dose calculation algorithm and the other uses Type-C. Treatment plans were re-calculated on the anatomy of a mid-treatment synthetic-CT utilizing the same algorithm utilized for pre-treatment planning. Assessment for plan-adaptation was evaluated through a decision model based on target coverage and OAR constraint violation. The impact of algorithm during treatment planning was controlled for by recalculating the Type-B plan with Type-C. Results In the Type-B approach, 13 patients required adaptation due to OAR-constraint violations, while 15 patients required adaptation in the Type-C approach. For 8 out of 30 cases, the decision to adapt was opposite in both approaches. None of the patients in our dataset encountered CTV-target underdosage that necessitated plan-adaptation. Upon recalculating the Type-B approach with the Type-C algorithm, it was shown that 10 of the original Type-B plans revealed clinically relevant dose reductions (≥3%) on the CTV in their original plans. This re-calculation identified 21 plans in total that required ART. Discussion In our study, nearly one-third of the cases would have a different decision for plan-adaption when utilizing Type-C instead of Type-B. There was no substantial increase in the total number of plan-adaptations for LA-NSCLC. However, Type-C is more sensitive to altered anatomy during treatment compared to Type-B. Recalculating Type-B plans with the Type-C algorithm revealed an increase from 13 to 21 cases triggering ART.
Collapse
Affiliation(s)
- Dylan Callens
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Karel Aerts
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Patrick Berkovic
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Liesbeth Vandewinckele
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Maarten Lambrecht
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - Wouter Crijns
- Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Janson M, Glimelius L, Fredriksson A, Traneus E, Engwall E. Treatment planning of scanned proton beams in RayStation. Med Dosim 2023; 49:2-12. [PMID: 37996354 DOI: 10.1016/j.meddos.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
The use of scanned proton beams in external beam radiation therapy has seen a rapid development over the past decade. This technique places new demands on treatment planning, as compared to conventional photon-based radiation therapy. In this article, several proton specific functions as implemented in the treatment planning system RayStation are presented. We will cover algorithms for energy layer and spot selection, basic optimization including the handling of spot weight limits, optimization of the linear energy transfer (LET) distribution, robust optimization including the special case of 4D optimization, proton arc planning, and automatic planning using deep learning. We will further present the Monte Carlo (MC) proton dose engine in RayStation to some detail, from the material interpretation of the CT data, through the beam model parameterization, to the actual MC transport mechanism. Useful tools for plan evaluation, including robustness evaluation, and the versatile scripting interface are also described. The overall aim of the paper is to give an overview of some of the key proton planning functions in RayStation, with example usages, and at the same time provide the details about the underlying algorithms that previously have not been fully publicly available.
Collapse
|
5
|
Clausen M, Ruangchan S, Sotoudegan A, Resch AF, Knäusl B, Palmans H, Georg D. Small field proton irradiation for in vivo studies: Potential and limitations when adapting clinical infrastructure. Z Med Phys 2023; 33:542-551. [PMID: 36357294 PMCID: PMC10751703 DOI: 10.1016/j.zemedi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate the dosimetric accuracy for small field proton irradiation relevant for pre-clinical in vivo studies using clinical infrastructure and technology. In this context additional beam collimation and range reduction was implemented. METHODS AND MATERIALS The clinical proton beam line employing pencil beam scanning (PBS) was adapted for the irradiation of small fields at shallow depths. Cylindrical collimators with apertures of 15, 12, 7 and 5mm as well as two different range shifter types, placed at different distances relative to the target, were tested: a bolus range shifter (BRS) attached to the collimator and a clinical nozzle mounted range shifter (CRS) placed at a distance of 72cm from the collimator. The Monte Carlo (MC) based dose calculation engine implemented in the clinical treatment planning system (TPS) was commissioned for these two additional hardware components. The study was conducted with a phantom and cylindrical target sizes between 2 and 25mm in diameter following a dosimetric end-to-end test concept. RESULTS The setup with the CRS provided a uniform dose distribution across the target. An agreement of better than5% between the planned dose and the measurements was obtained for a target with 3mm diameter (collimator 5mm). A 2mm difference between the collimator and the target diameter (target being 2 mm smaller than the collimator) sufficed to cover the whole target with the planned dose in the setup with CRS. Using the BRS setup (target 8mm, collimator 12mm) resulted in non-homogeneous dose distributions, with a dose discrepancy of up to 10% between the planned and measured doses. CONCLUSION The clinical proton infrastructure with adequate beam line adaptations and a state-of-the-art TPS based on MC dose calculations enables small animal irradiations with a high dosimetric precision and accuracy for target sizes down to 3mm.
Collapse
Affiliation(s)
- Monika Clausen
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.
| | - Sirinya Ruangchan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Therapeutic Radiation and Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Arame Sotoudegan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Andreas F Resch
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Barbara Knäusl
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Hugo Palmans
- Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, United Kingdom
| | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
6
|
Etschmaier V, Glänzer D, Eck N, Schäfer U, Leithner A, Georg D, Lohberger B. Proton and Carbon Ion Irradiation Changes the Process of Endochondral Ossification in an Ex Vivo Femur Organotypic Culture Model. Cells 2023; 12:2301. [PMID: 37759523 PMCID: PMC10527791 DOI: 10.3390/cells12182301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Particle therapy (PT) that utilizes protons and carbon ions offers a promising way to reduce the side effects of radiation oncology, especially in pediatric patients. To investigate the influence of PT on growing bone, we exposed an organotypic rat ex vivo femur culture model to PT. After irradiation, histological staining, immunohistochemical staining, and gene expression analysis were conducted following 1 or 14 days of in vitro culture (DIV). Our data indicated a significant loss of proliferating chondrocytes at 1 DIV, which was followed by regeneration attempts through chondrocytic cluster formation at 14 DIV. Accelerated levels of mineralization were observed, which correlated with increased proteoglycan production and secretion into the pericellular matrix. Col2α1 expression, which increased during the cultivation period, was significantly inhibited by PT. Additionally, the decrease in ColX expression over time was more pronounced compared to the non-IR control. The chondrogenic markers BMP2, RUNX2, OPG, and the osteogenic marker ALPL, showed a significant reduction in the increase in expression after 14 DIV due to PT treatment. It was noted that carbon ions had a stronger influence than protons. Our bone model demonstrated the occurrence of pathological and regenerative processes induced by PT, thus building on the current understanding of the biological mechanisms of bone.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Dietmar Glänzer
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Ute Schäfer
- Department of Neurosurgery, Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria;
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (V.E.); (D.G.); (N.E.); (A.L.)
| |
Collapse
|
7
|
Knäusl B, Langgartner L, Stock M, Janson M, Furutani KM, Beltran CJ, Georg D, Resch AF. Requirements for dose calculation on an active scanned proton beamline for small, shallow fields. Phys Med 2023; 113:102659. [PMID: 37598612 DOI: 10.1016/j.ejmp.2023.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION A growing interest in using proton pencil beam scanning in combination with collimators for the treatment of small, shallow targets, such as ocular melanoma or pre-clinical research emerged recently. This study aims at demonstrating that the dose of a synchrotron-based PBS system with a dedicated small, shallow field nozzle can be accurately predicted by a commercial treatment planning system (TPS) following appropriate tuning of both, nozzle and TPS. MATERIALS A removable extension to the clinical nozzle was developed to modify the beam shape passively. Five circular apertures with diameters between 5 to 34mm, mounted 72cm downstream of a range shifter were used. For each collimator treatment plans with spread-out Bragg peaks (SOBP) with a modulation of 3 to 30mm were measured and calculated with GATE/Geant4 and the research TPS RayStation (RS11B-R). The dose grid, multiple coulomb scattering and block discretization resolution were varied to find the optimal balance between accuracy and performance. RESULTS For SOBPs deeper than 10mm, the dose in the target agreed within 1% between RS11B-R, GATE/Geant4 and measurements for aperture diameters between 8 to 34mm, but deviated up to 5% for smaller apertures. A plastic taper was introduced reducing scatter contributions to the patient (from the pipe) and improving the dose calculation accuracy of the TPS to a 5% level in the entrance region for large apertures. CONCLUSION The commercial TPS and GATE/Geant4 can accurately calculate the dose for shallow, small proton fields using a collimator and pencil beam scanning.
Collapse
Affiliation(s)
- B Knäusl
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria.
| | - L Langgartner
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - M Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - M Janson
- RaySearch Laboratories, Stockholm, Sweden
| | - K M Furutani
- Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL, United States of America
| | - C J Beltran
- Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL, United States of America
| | - D Georg
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - A F Resch
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
8
|
Sheng Y, Volz L, Wang W, Durante M, Graeff C. Evaluation of proton and carbon ion beam models in TReatment Planning for Particles 4D (TRiP4D) referring to a commercial treatment planning system. Z Med Phys 2023:S0939-3889(23)00079-X. [PMID: 37455229 DOI: 10.1016/j.zemedi.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To investigate the accuracy of the treatment planning system (TPS) TRiP4D in reproducing doses computed by the clinically used TPS SyngoRT. METHODS Proton and carbon ion beam models in TRiP4D were converted from SyngoRT. Cubic plans with different depths in a water-tank phantom (WP) and previously treated and experimentally verified patient plans from SyngoRT were recalculated in TRiP4D. The target mean dose deviation (ΔDmean,T) and global gamma index (2%-2 mm for the absorbed dose and 3%-3mm for the RBE-weighted dose with 10% threshold) were evaluated. RESULTS The carbon and proton absorbed dose gamma passing rates (γ-PRs) were ≥99.93% and ΔDmean,T smaller than -0.22%. On average, the RBE-weighted dose Dmean,T was -1.26% lower for TRiP4D than SyngoRT for cubic plans. In TRiP4D, the faster analytical 'low dose approximation' (Krämer, 2006) was used, while SyngoRT used a stochastic implementation (Krämer, 2000). The average ΔDmean, T could be reduced to -0.59% when applying the same biological effect calculation algorithm. However, the dose recalculation time increased by a factor of 79-477. ΔDmean,T variation up to -2.27% and -2.79% was observed for carbon absorbed and RBE-weighted doses in patient plans. The γ-PRs were ≥93.92% and ≥91.83% for patient plans, except for one proton beam with a range shifter (γ-PR of 64.19%). CONCLUSION The absorbed dose between TRiP4D and SyngoRT were identical for both proton and carbon ion plans in the WP. Compared to SyngoRT, TRiP4D underestimated the target RBE-weighted dose; however more efficient in RBE-weighted dose calculation. Large variation for proton beam with range shifter was observed. TRiP4D will be used to evaluate doses delivered to moving targets. Uncertainties inherent to the 4D-dose reconstruction calculation are expected to be significantly larger than the dose errors reported here. For this reason, the residual differences between TRiP4D and SyngoRT observed in this study are considered acceptable. The study was approved by the Institutional Research Board of Shanghai Proton and Heavy Ion Center (approval number SPHIC-MP-2020-04, RS).
Collapse
Affiliation(s)
- Yinxiangzi Sheng
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China; School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lennart Volz
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Marco Durante
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Institute of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Christian Graeff
- Biophysics GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany; Institute of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
9
|
Manco L, Vega K, Maffei N, Gutierrez MV, Cenacchi E, Bernabei A, Bruni A, D'angelo E, Meduri B, Lohr F, Guidi G. Validation of RayStation Monte Carlo dose calculation algorithm for multiple LINACs. Phys Med 2023; 109:102588. [PMID: 37080156 DOI: 10.1016/j.ejmp.2023.102588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
PURPOSE A photon Monte Carlo (MC) model was commissioned for flattened (FF) and flattening filter free (FFF) 6 MV beam energy. The accuracy of this model, as a single model to be used for three beam matched LINACs, was evaluated. METHODS Multiple models were created in RayStation v.10A for three linacs equipped with Elekta "Agility" collimator. A clinically commissioned collapsed cone (CC) algorithm (GoldCC), a MC model automatically created from the CC algorithm without further optimization (CCtoMC) and an optimized MC model (GoldMC) were compared with measurements. The validation of the model was performed by following the recommendations of IAEA TRS 430 and comprised of basic validation in a water tank, validation in a heterogeneous phantom and validation of complex IMRT/VMAT paradigms using gamma analysis of calculated and measured dose maps in a 2D-Array. RESULTS Dose calculation with the GoldMC model resulted in a confidence level of 3% for point measurements in water tank and heterogeneous phantom for measurements performed in all three linacs. The same confidence level resulted for GoldCC model. Dose maps presented an agreement for all models on par to each other with γ criteria 2%/2mm. CONCLUSIONS The GoldMC model showed a good agreement with measured data and is determined to be accurate for clinical use for all three linacs in this study.
Collapse
Affiliation(s)
- Luigi Manco
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy; Medical Physics Unit, Azienda USL of Ferrara, 44124 Ferrara, Italy.
| | - Kevin Vega
- International Center of Theoretical Physics, Trieste, Italy; Centro Nacional de Radioterapia, Physics Unit, San Salvador, El Salvador
| | - Nicola Maffei
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | | | - Elisa Cenacchi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | - Annalisa Bernabei
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | - Alessio Bruni
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Elisa D'angelo
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Bruno Meduri
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Frank Lohr
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Gabriele Guidi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
10
|
Lohberger B, Glänzer D, Eck N, Stasny K, Falkner A, Leithner A, Georg D. The ATR Inhibitor VE-821 Enhances the Radiosensitivity and Suppresses DNA Repair Mechanisms of Human Chondrosarcoma Cells. Int J Mol Sci 2023; 24:2315. [PMID: 36768638 PMCID: PMC9917087 DOI: 10.3390/ijms24032315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
To overcome the resistance to radiotherapy in chondrosarcomas, the prevention of efficient DNA repair with an additional treatment was explored for particle beams as well as reference X-ray irradiation. The combined treatment with DNA repair inhibitors-with a focus on ATRi VE-821-and proton or carbon ions irradiation was investigated regarding cell viability, proliferation, cell cycle distribution, MAPK phosphorylation, and the expression of key DNA repair genes in two human chondrosarcoma cell lines. Pre-treatment with the PARPis Olaparib or Veliparib, the ATMi Ku-55933, and the ATRi VE-821 resulted in a dose-dependent reduction in viability, whereas VE-821 has the most efficient response. Quantification of γH2AX phosphorylation and protein expression of the DNA repair pathways showed a reduced regenerative capacity after irradiation. Furthermore, combined treatment with VE-821 and particle irradiation increased MAPK phosphorylation and the expression of apoptosis markers. At the gene expression and at the protein expression/phosphorylation level, we were able to demonstrate the preservation of DNA damage after combined treatment. The present data showed that the combined treatment with ATMi VE-821 increases the radiosensitivity of human chondrosarcoma cells in vitro and significantly suppresses efficient DNA repair mechanisms, thus improving the efficiency of radiotherapy.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | | | - Anna Falkner
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Dietmar Georg
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Lohberger B, Barna S, Glänzer D, Eck N, Kerschbaum-Gruber S, Stasny K, Leithner A, Georg D. Cellular and Molecular Biological Alterations after Photon, Proton, and Carbon Ions Irradiation in Human Chondrosarcoma Cells Linked with High-Quality Physics Data. Int J Mol Sci 2022; 23:11464. [PMID: 36232764 PMCID: PMC9569755 DOI: 10.3390/ijms231911464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chondrosarcomas are particularly difficult to treat due to their resistance to chemotherapy and radiotherapy. However, particle therapy can enhance local control and patient survival rates. To improve our understanding of the basic cellular radiation response, as a function of dose and linear energy transfer (LET), we developed a novel water phantom-based setup for cell culture experiments and characterized it dosimetrically. In a direct comparison, human chondrosarcoma cell lines were analyzed with regard to their viability, cell proliferation, cell cycle, and DNA repair behavior after irradiation with X-ray, proton, and carbon ions. Our results clearly showed that cell viability and proliferation were inhibited according to the increasing ionization density, i.e., LET, of the irradiation modes. Furthermore, a prominent G2/M arrest was shown. Gene expression profiling proved the upregulation of the senescence genes CDKN1A (p21), CDKN2A (p16NK4a), BMI1, and FOXO4 after particle irradiation. Both proton or C-ion irradiation caused a positive regulation of the repair genes ATM, NBN, ATXR, and XPC, and a highly significant increase in XRCC1/2/3, ERCC1, XPC, and PCNA expression, with C-ions appearing to activate DNA repair mechanisms more effectively. The link between the physical data and the cellular responses is an important contribution to the improvement of the treatment system.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Glänzer
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | | | | | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| |
Collapse
|
12
|
Thasasi P, Ruangchan S, Oonsiri P, Oonsiri S. Determination of Integral Depth Dose in Proton Pencil Beam Using Plane-parallel Ionization Chambers. Int J Part Ther 2022; 9:1-9. [PMID: 36060414 PMCID: PMC9415752 DOI: 10.14338/ijpt-22-00006.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose This study aimed to determine the integral depth-dose curves and assess the geometric collection efficiency of different detector diameters in proton pencil beam scanning. Materials and Methods The Varian ProBeam Compact spot scanning system was used for this study. The integral depth-dose curves with a proton energy range of 130 to 220 MeV were acquired with 2 types of Bragg peak chambers: 34070 with 8-cm diameter and 34089 with 15-cm diameter (PTW), multi-layer ionization chamber with 12-cm diameter (Giraffe, IBA Dosimetry), and PeakFinder with 8-cm diameter (PTW). To assess geometric collection efficiency, the integral depth-dose curves of 8- and 12-cm chamber diameters were compared to a 15-cm chamber diameter as the largest detector. Results At intermediate depths of 130, 150, 190, and 220 MeV, PTW Bragg peak chamber type 34089 provided the highest integral depth-dose curves followed by IBA Giraffe, PTW Bragg peak chamber type 34070, and PTW PeakFinder. Moreover, PTW Bragg peak chamber type 34089 had increased geometric collection efficiency up to 3.8%, 6.1%, and 3.1% when compared to PTW Bragg peak chamber type 34070, PTW PeakFinder, and IBA Giraffe, respectively. Conclusion A larger plane-parallel ionization chamber could increase the geometric collection efficiency of the detector, especially at intermediate depths and high-energy proton beams.
Collapse
Affiliation(s)
- Phatthraporn Thasasi
- 1 Medical Physics Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- 2 Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sirinya Ruangchan
- 2 Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Puntiwa Oonsiri
- 2 Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sornjarod Oonsiri
- 2 Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
13
|
Ruangchan S, Palmans H, Knäusl B, Georg D, Clausen M. Dose calculation accuracy in particle therapy: Comparing carbon ions with protons. Med Phys 2021; 48:7333-7345. [PMID: 34482555 PMCID: PMC9291072 DOI: 10.1002/mp.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This work presents the validation of an analytical pencil beam dose calculation algorithm in a commercial treatment planning system (TPS) for carbon ions by measurements of dose distributions in heterogeneous phantom geometries. Additionally, a comparison study of carbon ions versus protons is performed considering current best solutions in commercial TPS. METHODS All treatment plans were optimized and calculated using the RayStation TPS (RaySearch, Sweden). The dose distributions calculated with the TPS were compared with measurements using a 24-pinpoint ionization chamber array (T31015, PTW, Germany). Tissue-like inhomogeneities (bone, lung, and soft tissue) were embedded in water, while a target volume of 4 x 4 x 4 cm3 was defined at two different depths behind the heterogeneities. In total, 10 different test cases, with and without range shifter as well as different air gaps, were investigated. Dose distributions inside as well as behind the target volume were evaluated. RESULTS Inside the target volume, the mean dose difference between calculations and measurements, averaged over all test cases, was 1.6% for carbon ions. This compares well to the final agreement of 1.5% obtained in water at the commissioning stage of the TPS for carbon ions and is also within the clinically acceptable interval of 3%. The mean dose difference and maximal dose difference obtained outside the target area were 1.8% and 13.4%, respectively. The agreement of dose distributions for carbon ions in the target volumes was comparable or better to that between Monte Carlo (MC) dose calculations and measurements for protons. Percentage dose differences of more than 10% were present outside the target area behind bone-lung structures, where the carbon ion calculations systematically over predicted the dose. MC dose calculations for protons were superior to carbon ion beams outside the target volumes. CONCLUSION The pencil beam dose calculations for carbon ions in RayStation were found to be in good agreement with dosimetric measurements in heterogeneous geometries for points of interest located within the target. Large local discrepancies behind the target may contribute to incorrect dose predictions for organs at risk.
Collapse
Affiliation(s)
- Sirinya Ruangchan
- Department of Radiation OncologyMedical University of ViennaViennaAustria
- Department of RadiologyKing Chulalongkorn Memorial HospitalBangkokThailand
| | - Hugo Palmans
- Division of Medical PhysicsMedAustron Ion Therapy CenterWiener NeustadtAustria
- Medical Radiation ScienceNational Physical LaboratoryTeddingtonUK
| | - Barbara Knäusl
- Department of Radiation OncologyMedical University of ViennaViennaAustria
- Division of Medical PhysicsMedAustron Ion Therapy CenterWiener NeustadtAustria
| | - Dietmar Georg
- Department of Radiation OncologyMedical University of ViennaViennaAustria
- Division of Medical PhysicsMedAustron Ion Therapy CenterWiener NeustadtAustria
| | - Monika Clausen
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Bäumer C, Bäcker CM, Conti M, Fragoso Costa P, Herrmann K, Kazek SL, Jentzen W, Panin V, Siegel S, Teimoorisichani M, Wulff J, Timmermann B. Can a ToF-PET photon attenuation reconstruction test stopping-power estimations in proton therapy? A phantom study. Phys Med Biol 2021; 66. [PMID: 34534971 DOI: 10.1088/1361-6560/ac27b5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
Objective. The aim of the phantom study was to validate and to improve the computed tomography (CT) images used for the dose computation in proton therapy. It was tested, if the joint reconstruction of activity and attenuation images of time-of-flight PET (ToF-PET) scans could improve the estimation of the proton stopping-power.Approach. The attenuation images, i.e. CT images with 511 keV gamma-rays (γCTs), were jointly reconstructed with activity maps from ToF-PET scans. Theβ+activity was produced with FDG and in a separate experiment with proton-induced radioactivation. The phantoms contained slabs of tissue substitutes. The use of theγCTs for the prediction of the beam stopping in proton therapy was based on a linear relationship between theγ-ray attenuation, the electron density, and the stopping-power of fast protons.Main results. The FDG based experiment showed sufficient linearity to detect a bias of bony tissue in the heuristic look-up table, which maps between x-ray CT images and proton stopping-power.γCTs can be used for dose computation, if the electron density of one type of tissue is provided as a scaling factor. A possible limitation is imposed by the spatial resolution, which is inferior by a factor of 2.5 compared to the one of the x-ray CT.γCTs can also be derived from off-line, ToF-PET scans subsequent to the application of a proton field with a hypofractionated dose level.Significance. γCTs are a viable tool to support the estimation of proton stopping with radiotracer-based ToF-PET data from diagnosis or staging. This could be of higher potential relevance in MRI-guided proton therapy.γCTs could form an alternative approach to make use of in-beam or off-line PET scans of proton-inducedβ+activity with possible clinical limitations due to the low number of coincidence counts.
Collapse
Affiliation(s)
- C Bäumer
- West German Proton Therapy Centre Essen, Am Mühlenbach 1, Essen, Germany.,University Hospital Essen, Hufelandstr. 55, Essen, Germany.,West German Cancer Center (WTZ), Hufelandstr. 55, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4a, Dortmund, Germany
| | - C M Bäcker
- West German Proton Therapy Centre Essen, Am Mühlenbach 1, Essen, Germany.,University Hospital Essen, Hufelandstr. 55, Essen, Germany.,West German Cancer Center (WTZ), Hufelandstr. 55, Essen, Germany.,TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4a, Dortmund, Germany
| | - M Conti
- Siemens Medical Solutions USA Inc., Knoxville, Tennessee, United States of America
| | - P Fragoso Costa
- University Hospital Essen, Hufelandstr. 55, Essen, Germany.,University Hospital Essen, Clinic for Nuclear Medicine, Hufelandstr. 55, Essen, Germany
| | - K Herrmann
- University Hospital Essen, Hufelandstr. 55, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,University Hospital Essen, Clinic for Nuclear Medicine, Hufelandstr. 55, Essen, Germany
| | - S L Kazek
- University Hospital Essen, Hufelandstr. 55, Essen, Germany.,University Hospital Essen, Clinic for Nuclear Medicine, Hufelandstr. 55, Essen, Germany
| | - W Jentzen
- University Hospital Essen, Hufelandstr. 55, Essen, Germany.,University Hospital Essen, Clinic for Nuclear Medicine, Hufelandstr. 55, Essen, Germany
| | - V Panin
- Siemens Medical Solutions USA Inc., Knoxville, Tennessee, United States of America
| | - S Siegel
- Siemens Medical Solutions USA Inc., Knoxville, Tennessee, United States of America
| | - M Teimoorisichani
- Siemens Medical Solutions USA Inc., Knoxville, Tennessee, United States of America
| | - J Wulff
- West German Proton Therapy Centre Essen, Am Mühlenbach 1, Essen, Germany.,University Hospital Essen, Hufelandstr. 55, Essen, Germany.,West German Cancer Center (WTZ), Hufelandstr. 55, Essen, Germany
| | - B Timmermann
- West German Proton Therapy Centre Essen, Am Mühlenbach 1, Essen, Germany.,University Hospital Essen, Hufelandstr. 55, Essen, Germany.,West German Cancer Center (WTZ), Hufelandstr. 55, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,University Hospital Essen, Department of Particle Therapy, Hufelandstr. 55, Essen, Germany
| |
Collapse
|
15
|
Clinical validation of a GPU-based Monte Carlo dose engine of a commercial treatment planning system for pencil beam scanning proton therapy. Phys Med 2021; 88:226-234. [PMID: 34311160 DOI: 10.1016/j.ejmp.2021.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To perform the validation of the GPU-based (Graphical Processing Unit based) proton Monte Carlo (MC) dose engine implemented in a commercial TPS (RayStation 10B) and to report final dose calculation times for clinical cases. MATERIALS AND METHODS 440 patients treated at the Proton Therapy Center of Trento, Italy, between 2018 and 2019 were selected for this study. 636 approved plans with 3361 beams computed with the clinically implemented CPU-MC dose engine (version 4.2 and 4.5), were used for the validation of the new algorithm. For each beam, the dose was recalculated using the new GPU-MC dose engine with the initial CPU computation settings and compared to the original CPU-MC dose. Beam dose difference distributions were studied to ensure that the two dose distributions were equal within the expected fluctuations of the MC statistical uncertainty (s) of each computation. Plan dose distributions were compared with respect to the dosimetric indices D98, D50 and D1 of all ROIs defined as targets. A complete assessment of the computation time as a function of s and dose grid voxel size was done. RESULTS The median over all mean beam dose differences between CPU- and GPU-MC was -0.01% and the median of the corresponding standard deviations was close to (√2s) both for simulations with an s of 0.5% and 1.0% per beam. This shows that the two dose distributions can be considered equal. All the DVH indices showed an average difference below 0.04%. About half of the plans were computed with 1.0% statistical uncertainty on a 2 mm dose calculation grid, for which the median computation time was 5.2 s. The median computational speed for all plans in the study was 8.4 million protons/second. CONCLUSION A validation of a clinical MC algorithm running on GPU was performed on a large pool of patients treated with pencil beam scanning proton therapy. We demonstrated that the differences with the previous CPU-based MC were only due to the intrinsic statistical fluctuations of the MC method, which translated to insignificant differences on plan dose level. The significant increase in dose calculation speed is expected to facilitate new clinical workflows.
Collapse
|
16
|
Maes D, Janson M, Regmi R, Egan A, Rosenfeld A, Bloch C, Wong T, Saini J. Validation and practical implementation of seated position radiotherapy in a commercial TPS for proton therapy. Phys Med 2020; 80:175-185. [PMID: 33189048 DOI: 10.1016/j.ejmp.2020.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This work aims to validate new 6D couch features and their implementation for seated radiotherapy in RayStation (RS) treatment planning system (TPS). MATERIALS AND METHODS In RS TPS, new 6D couch features are (i) chair support device, (ii) patient treatment option of "Sitting: face towards the front of the chair", and (iii) patient support pitch and roll capabilities. The validation of pitch and roll was performed by comparing TPS generated DRRs with planar x-rays. Dosimetric tests through measurement by 2D ion chamber array were performed for beams created with varied scanning and treatment orientation and 6D couch rotations. For the implementation of 6D couch features for treatments in a seated position, the TPS and oncology information system (Mosaiq) settings are described for a commercial chair. An end-to-end test using an anthropomorphic phantom was performed to test the complete workflow from simulation to treatment delivery. RESULTS The 6D couch features were found to have a consistent implementation that met IEC 61712 standard. The DRRs were found to have an acceptable agreement with planar x-rays based on visual inspection. For dose map comparison between measured and calculated, the gamma index analysis for all the beams was >95% at a 3% dose-difference and 3 mm distance-to-agreement tolerances. For an end-to end-testing, the phantom was successfully set up at isocenter in the seated position and treatment was delivered. CONCLUSIONS Chair-based treatments in a seated position can be implemented in RayStation through the use of newly released 6D couch features.
Collapse
Affiliation(s)
- Dominic Maes
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Martin Janson
- RaySearch Laboratories, Sveavägen 44, 111 34 Stockholm, Sweden
| | - Rajesh Regmi
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States
| | - Alexander Egan
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Charles Bloch
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Departments of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, United States
| | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Departments of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, United States
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Departments of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, United States.
| |
Collapse
|