1
|
Hohlmann B, Broessner P, Radermacher K. Ultrasound-based 3D bone modelling in computer assisted orthopedic surgery - a review and future challenges. Comput Assist Surg (Abingdon) 2024; 29:2276055. [PMID: 38261543 DOI: 10.1080/24699322.2023.2276055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Computer-assisted orthopedic surgery requires precise representations of bone surfaces. To date, computed tomography constitutes the gold standard, but comes with a number of limitations, including costs, radiation and availability. Ultrasound has potential to become an alternative to computed tomography, yet suffers from low image quality and limited field-of-view. These shortcomings may be addressed by a fully automatic segmentation and model-based completion of 3D bone surfaces from ultrasound images. This survey summarizes the state-of-the-art in this field by introducing employed algorithms, and determining challenges and trends. For segmentation, a clear trend toward machine learning-based algorithms can be observed. For 3D bone model completion however, none of the published methods involve machine learning. Furthermore, data sets and metrics are identified as weak spots in current research, preventing development and evaluation of models that generalize well.
Collapse
Affiliation(s)
- Benjamin Hohlmann
- Chair of Medical Engineering, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany
| | - Peter Broessner
- Chair of Medical Engineering, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany
| | - Klaus Radermacher
- Chair of Medical Engineering, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany
| |
Collapse
|
2
|
Devisri B, Kavitha M. Fetal growth analysis from ultrasound videos based on different biometrics using optimal segmentation and hybrid classifier. Stat Med 2024; 43:1019-1047. [PMID: 38155152 DOI: 10.1002/sim.9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Birth defects and their associated deaths, high health and financial costs of maternal care and associated morbidity are major contributors to infant mortality. If permitted by law, prenatal diagnosis allows for intrauterine care, more complicated hospital deliveries, and termination of pregnancy. During pregnancy, a set of measurements is commonly used to monitor the fetal health, including fetal head circumference, crown-rump length, abdominal circumference, and femur length. Because of the intricate interactions between the biological tissues and the US waves mother and fetus, analyzing fetal US images from a specialized perspective is difficult. Artifacts include acoustic shadows, speckle noise, motion blur, and missing borders. The fetus moves quickly, body structures close, and the weeks of pregnancy vary greatly. In this work, we propose a fetal growth analysis through US image of head circumference biometry using optimal segmentation and hybrid classifier. First, we introduce a hybrid whale with oppositional fruit fly optimization (WOFF) algorithm for optimal segmentation of segment fetal head which improves the detection accuracy. Next, an improved U-Net design is utilized for the hidden feature (head circumference biometry) extraction which extracts features from the segmented extraction. Then, we design a modified Boosting arithmetic optimization (MBAO) algorithm for feature optimization to selects optimal best features among multiple features for the reduction of data dimensionality issues. Furthermore, a hybrid deep learning technique called bi-directional LSTM with convolutional neural network (B-LSTM-CNN) for fetal growth analysis to compute the fetus growth and health. Finally, we validate our proposed method through the open benchmark datasets are HC18 (Ultrasound image) and oxford university research archive (ORA-data) (Ultrasound video frames). We compared the simulation results of our proposed algorithm with the existing state-of-art techniques in terms of various metrics.
Collapse
Affiliation(s)
- B Devisri
- Department of Electronics and communication Engineering, K. Ramakrishnan College of Technology, (Affiliated to Anna University Chennai), Trichy, India
| | - M Kavitha
- Department of Electronics and Communication Engineering, K. Ramakrishnan College of Technology, Trichy, India
| |
Collapse
|
3
|
Oghli MG, Bagheri SM, Shabanzadeh A, Mehrjardi MZ, Akhavan A, Shiri I, Taghipour M, Shabanzadeh Z. Fully automated kidney image biomarker prediction in ultrasound scans using Fast-Unet+. Sci Rep 2024; 14:4782. [PMID: 38413748 PMCID: PMC10899245 DOI: 10.1038/s41598-024-55106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Any kidney dimension and volume variation can be a remarkable indicator of kidney disorders. Precise kidney segmentation in standard planes plays an undeniable role in predicting kidney size and volume. On the other hand, ultrasound is the modality of choice in diagnostic procedures. This paper proposes a convolutional neural network with nested layers, namely Fast-Unet++, promoting the Fast and accurate Unet model. First, the model was trained and evaluated for segmenting sagittal and axial images of the kidney. Then, the predicted masks were used to estimate the kidney image biomarkers, including its volume and dimensions (length, width, thickness, and parenchymal thickness). Finally, the proposed model was tested on a publicly available dataset with various shapes and compared with the related networks. Moreover, the network was evaluated using a set of patients who had undergone ultrasound and computed tomography. The dice metric, Jaccard coefficient, and mean absolute distance were used to evaluate the segmentation step. 0.97, 0.94, and 3.23 mm for the sagittal frame, and 0.95, 0.9, and 3.87 mm for the axial frame were achieved. The kidney dimensions and volume were evaluated using accuracy, the area under the curve, sensitivity, specificity, precision, and F1.
Collapse
Affiliation(s)
| | - Seyed Morteza Bagheri
- Department of Radiology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shabanzadeh
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| | - Mohammad Zare Mehrjardi
- Section of Body Imaging, Division of Clinical Research, Climax Radiology Education Foundation, Tehran, Iran
| | - Ardavan Akhavan
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Mostafa Taghipour
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| | - Zahra Shabanzadeh
- Research and Development Department, Med Fanavaran Plus Co., Karaj, Iran
| |
Collapse
|
4
|
Enache IA, Iovoaica-Rămescu C, Ciobanu ȘG, Berbecaru EIA, Vochin A, Băluță ID, Istrate-Ofițeru AM, Comănescu CM, Nagy RD, Iliescu DG. Artificial Intelligence in Obstetric Anomaly Scan: Heart and Brain. Life (Basel) 2024; 14:166. [PMID: 38398675 PMCID: PMC10890185 DOI: 10.3390/life14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The ultrasound scan represents the first tool that obstetricians use in fetal evaluation, but sometimes, it can be limited by mobility or fetal position, excessive thickness of the maternal abdominal wall, or the presence of post-surgical scars on the maternal abdominal wall. Artificial intelligence (AI) has already been effectively used to measure biometric parameters, automatically recognize standard planes of fetal ultrasound evaluation, and for disease diagnosis, which helps conventional imaging methods. The usage of information, ultrasound scan images, and a machine learning program create an algorithm capable of assisting healthcare providers by reducing the workload, reducing the duration of the examination, and increasing the correct diagnosis capability. The recent remarkable expansion in the use of electronic medical records and diagnostic imaging coincides with the enormous success of machine learning algorithms in image identification tasks. OBJECTIVES We aim to review the most relevant studies based on deep learning in ultrasound anomaly scan evaluation of the most complex fetal systems (heart and brain), which enclose the most frequent anomalies.
Collapse
Affiliation(s)
- Iuliana-Alina Enache
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.E.); (C.I.-R.); (E.I.A.B.)
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
| | - Cătălina Iovoaica-Rămescu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.E.); (C.I.-R.); (E.I.A.B.)
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
| | - Ștefan Gabriel Ciobanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.E.); (C.I.-R.); (E.I.A.B.)
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
| | - Elena Iuliana Anamaria Berbecaru
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.E.); (C.I.-R.); (E.I.A.B.)
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
| | - Andreea Vochin
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
| | - Ionuț Daniel Băluță
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
| | - Anca Maria Istrate-Ofițeru
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
- Ginecho Clinic, Medgin SRL, 200333 Craiova, Romania
- Research Centre for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| | - Cristina Maria Comănescu
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
- Ginecho Clinic, Medgin SRL, 200333 Craiova, Romania
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Daniela Nagy
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
- Ginecho Clinic, Medgin SRL, 200333 Craiova, Romania
| | - Dominic Gabriel Iliescu
- Department of Obstetrics and Gynecology, University Emergency County Hospital, 200642 Craiova, Romania; (A.V.); (I.D.B.); (A.M.I.-O.); (C.M.C.); (R.D.N.); (D.G.I.)
- Ginecho Clinic, Medgin SRL, 200333 Craiova, Romania
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
5
|
Liu X, Li P, Yang Y, Tian C. Ultrasound-based horizontal ranging in the localization of fetal conus medullaris. Technol Health Care 2024; 32:1371-1382. [PMID: 37781826 PMCID: PMC11091612 DOI: 10.3233/thc-230332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/27/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Currently, there are a variety of methods for ultrasound to localize the conus medullaris. A concern is that measured values can be influenced by variations in spinal flexion and extension. OBJECTIVE To overcome this limitation, the present study measures the horizontal distance (HD) between the end of the conus medullaris and the caudal edge of last vertebral body ossification in normal fetus at different gestational weeks, and analyzes the relationship between the measured value and fetal growth, as well as the utility of these measurements in assessing the position of the conus medullaris. METHODS A total of 655 fetuses at gestational weeks 18-40, who underwent routine prenatal ultrasound, were selected in the study. We measured the distance between the end of the cone of the fetal spinal cord and the caudal end of the final vertebral ossification center (Distance1, D1), the distance between the end of the spinal cord cone and the intersection of the extension of D1 with the caudal skin (Distance2, D2), and HD. We analyzed the correlation between the measurements and gestational weeks, established normal reference values, the ratio of D1, D2 and HD to the commonly used growth parameters was calculated. The ratios of D1, D2, HD and the application value of each ratio phase were analyzed, and the reliability analysis of repeated measurement results among physicians was performed. RESULTS D1, D2 and HD exhibited strong linear correlations with gestational weeks. Among the ratios of D1, D2 and HD to common growth parameters, D2/FL stabilized after 20 weeks of gestation and consistently exceeded 1. Repeatability tests between D1, D2 and HD showed good reliability (P> 0.05). CONCLUSION D1, D2 and HD are significantly correlated with gestational age. Horizontal distance measurement can effectively determine the position of fetal conus medullaris, enabling rapid prenatal evaluation of low position of conus medullaris and excluding the possibility of tethered cord.
Collapse
Affiliation(s)
- Xiuping Liu
- Department of Obstetrics and Gynecology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Ping Li
- Department of Obstetrics and Gynecology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Yuemin Yang
- Department of Obstetrics and Gynecology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Cheng Tian
- Department of Ultrasound, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Ramirez Zegarra R, Ghi T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:185-194. [PMID: 36436205 DOI: 10.1002/uog.26130] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Deep learning is considered the leading artificial intelligence tool in image analysis in general. Deep-learning algorithms excel at image recognition, which makes them valuable in medical imaging. Obstetric ultrasound has become the gold standard imaging modality for detection and diagnosis of fetal malformations. However, ultrasound relies heavily on the operator's experience, making it unreliable in inexperienced hands. Several studies have proposed the use of deep-learning models as a tool to support sonographers, in an attempt to overcome these problems inherent to ultrasound. Deep learning has many clinical applications in the field of fetal imaging, including identification of normal and abnormal fetal anatomy and measurement of fetal biometry. In this Review, we provide a comprehensive explanation of the fundamentals of deep learning in fetal imaging, with particular focus on its clinical applicability. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Ramirez Zegarra
- Department of Medicine and Surgery, Obstetrics and Gynecology Unit, University of Parma, Parma, Italy
| | - T Ghi
- Department of Medicine and Surgery, Obstetrics and Gynecology Unit, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Horgan R, Nehme L, Abuhamad A. Artificial intelligence in obstetric ultrasound: A scoping review. Prenat Diagn 2023; 43:1176-1219. [PMID: 37503802 DOI: 10.1002/pd.6411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The objective is to summarize the current use of artificial intelligence (AI) in obstetric ultrasound. PubMed, Cochrane Library, and ClinicalTrials.gov databases were searched using the following keywords "neural networks", OR "artificial intelligence", OR "machine learning", OR "deep learning", AND "obstetrics", OR "obstetrical", OR "fetus", OR "foetus", OR "fetal", OR "foetal", OR "pregnancy", or "pregnant", AND "ultrasound" from inception through May 2022. The search was limited to the English language. Studies were eligible for inclusion if they described the use of AI in obstetric ultrasound. Obstetric ultrasound was defined as the process of obtaining ultrasound images of a fetus, amniotic fluid, or placenta. AI was defined as the use of neural networks, machine learning, or deep learning methods. The authors' search identified a total of 127 papers that fulfilled our inclusion criteria. The current uses of AI in obstetric ultrasound include first trimester pregnancy ultrasound, assessment of placenta, fetal biometry, fetal echocardiography, fetal neurosonography, assessment of fetal anatomy, and other uses including assessment of fetal lung maturity and screening for risk of adverse pregnancy outcomes. AI holds the potential to improve the ultrasound efficiency, pregnancy outcomes in low resource settings, detection of congenital malformations and prediction of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rebecca Horgan
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Lea Nehme
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Alfred Abuhamad
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
8
|
Xiao S, Zhang J, Zhu Y, Zhang Z, Cao H, Xie M, Zhang L. Application and Progress of Artificial Intelligence in Fetal Ultrasound. J Clin Med 2023; 12:jcm12093298. [PMID: 37176738 PMCID: PMC10179567 DOI: 10.3390/jcm12093298] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Prenatal ultrasonography is the most crucial imaging modality during pregnancy. However, problems such as high fetal mobility, excessive maternal abdominal wall thickness, and inter-observer variability limit the development of traditional ultrasound in clinical applications. The combination of artificial intelligence (AI) and obstetric ultrasound may help optimize fetal ultrasound examination by shortening the examination time, reducing the physician's workload, and improving diagnostic accuracy. AI has been successfully applied to automatic fetal ultrasound standard plane detection, biometric parameter measurement, and disease diagnosis to facilitate conventional imaging approaches. In this review, we attempt to thoroughly review the applications and advantages of AI in prenatal fetal ultrasound and discuss the challenges and promises of this new field.
Collapse
Affiliation(s)
- Sushan Xiao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Junmin Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ye Zhu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zisang Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Haiyan Cao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
9
|
Salehi M, Vafaei Sadr A, Mahdavi SR, Arabi H, Shiri I, Reiazi R. Deep Learning-based Non-rigid Image Registration for High-dose Rate Brachytherapy in Inter-fraction Cervical Cancer. J Digit Imaging 2023; 36:574-587. [PMID: 36417026 PMCID: PMC10039214 DOI: 10.1007/s10278-022-00732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, an inter-fraction organ deformation simulation framework for the locally advanced cervical cancer (LACC), which considers the anatomical flexibility, rigidity, and motion within an image deformation, was proposed. Data included 57 CT scans (7202 2D slices) of patients with LACC randomly divided into the train (n = 42) and test (n = 15) datasets. In addition to CT images and the corresponding RT structure (bladder, cervix, and rectum), the bone was segmented, and the coaches were eliminated. The correlated stochastic field was simulated using the same size as the target image (used for deformation) to produce the general random deformation. The deformation field was optimized to have a maximum amplitude in the rectum region, a moderate amplitude in the bladder region, and an amplitude as minimum as possible within bony structures. The DIRNet is a convolutional neural network that consists of convolutional regressors, spatial transformation, as well as resampling blocks. It was implemented by different parameters. Mean Dice indices of 0.89 ± 0.02, 0.96 ± 0.01, and 0.93 ± 0.02 were obtained for the cervix, bladder, and rectum (defined as at-risk organs), respectively. Furthermore, a mean average symmetric surface distance of 1.61 ± 0.46 mm for the cervix, 1.17 ± 0.15 mm for the bladder, and 1.06 ± 0.42 mm for the rectum were achieved. In addition, a mean Jaccard of 0.86 ± 0.04 for the cervix, 0.93 ± 0.01 for the bladder, and 0.88 ± 0.04 for the rectum were observed on the test dataset (15 subjects). Deep learning-based non-rigid image registration is, therefore, proposed for the high-dose-rate brachytherapy in inter-fraction cervical cancer since it outperformed conventional algorithms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Vafaei Sadr
- Department of Theoretical Physics and Center for Astroparticle Physics, University of Geneva, Geneva, Switzerland
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
| | - Reza Reiazi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Division of Radiation Oncology, Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
10
|
Fiorentino MC, Villani FP, Di Cosmo M, Frontoni E, Moccia S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med Image Anal 2023; 83:102629. [PMID: 36308861 DOI: 10.1016/j.media.2022.102629] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. A number of survey papers in the field is today available, but most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 153 research papers published after 2017. Papers are analyzed and commented from both the methodology and the application perspective. We categorized the papers into (i) fetal standard-plane detection, (ii) anatomical structure analysis and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. In addition, emerging applications are also outlined. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into actual clinical practice.
Collapse
Affiliation(s)
| | | | - Mariachiara Di Cosmo
- Department of Information Engineering, Università Politecnica delle Marche, Italy
| | - Emanuele Frontoni
- Department of Information Engineering, Università Politecnica delle Marche, Italy; Department of Political Sciences, Communication and International Relations, Università degli Studi di Macerata, Italy
| | - Sara Moccia
- The BioRobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Italy
| |
Collapse
|
11
|
Amniotic Fluid Classification and Artificial Intelligence: Challenges and Opportunities. SENSORS 2022; 22:s22124570. [PMID: 35746352 PMCID: PMC9228529 DOI: 10.3390/s22124570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022]
Abstract
A fetal ultrasound (US) is a technique to examine a baby’s maturity and development. US examinations have varying purposes throughout pregnancy. Consequently, in the second and third trimester, US tests are performed for the assessment of Amniotic Fluid Volume (AFV), a key indicator of fetal health. Disorders resulting from abnormal AFV levels, commonly referred to as oligohydramnios or polyhydramnios, may pose a serious threat to a mother’s or child’s health. This paper attempts to accumulate and compare the most recent advancements in Artificial Intelligence (AI)-based techniques for the diagnosis and classification of AFV levels. Additionally, we provide a thorough and highly inclusive breakdown of other relevant factors that may cause abnormal AFV levels, including, but not limited to, abnormalities in the placenta, kidneys, or central nervous system, as well as other contributors, such as preterm birth or twin-to-twin transfusion syndrome. Furthermore, we bring forth a concise overview of all the Machine Learning (ML) and Deep Learning (DL) techniques, along with the datasets supplied by various researchers. This study also provides a brief rundown of the challenges and opportunities encountered in this field, along with prospective research directions and promising angles to further explore.
Collapse
|
12
|
Shiri I, Arabi H, Salimi Y, Sanaat A, Akhavanallaf A, Hajianfar G, Askari D, Moradi S, Mansouri Z, Pakbin M, Sandoughdaran S, Abdollahi H, Radmard AR, Rezaei‐Kalantari K, Ghelich Oghli M, Zaidi H. COLI-Net: Deep learning-assisted fully automated COVID-19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2022; 32:12-25. [PMID: 34898850 PMCID: PMC8652855 DOI: 10.1002/ima.22672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/18/2021] [Accepted: 10/17/2021] [Indexed: 05/17/2023]
Abstract
We present a deep learning (DL)-based automated whole lung and COVID-19 pneumonia infectious lesions (COLI-Net) detection and segmentation from chest computed tomography (CT) images. This multicenter/multiscanner study involved 2368 (347'259 2D slices) and 190 (17 341 2D slices) volumetric CT exams along with their corresponding manual segmentation of lungs and lesions, respectively. All images were cropped, resized, and the intensity values clipped and normalized. A residual network with non-square Dice loss function built upon TensorFlow was employed. The accuracy of lung and COVID-19 lesions segmentation was evaluated on an external reverse transcription-polymerase chain reaction positive COVID-19 dataset (7'333 2D slices) collected at five different centers. To evaluate the segmentation performance, we calculated different quantitative metrics, including radiomic features. The mean Dice coefficients were 0.98 ± 0.011 (95% CI, 0.98-0.99) and 0.91 ± 0.038 (95% CI, 0.90-0.91) for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 0.03 ± 0.84% (95% CI, -0.12 to 0.18) and -0.18 ± 3.4% (95% CI, -0.8 to 0.44) for the lung and lesions, respectively. The relative volume difference for lung and lesions were 0.38 ± 1.2% (95% CI, 0.16-0.59) and 0.81 ± 6.6% (95% CI, -0.39 to 2), respectively. Most radiomic features had a mean relative error less than 5% with the highest mean relative error achieved for the lung for the range first-order feature (-6.95%) and least axis length shape feature (8.68%) for lesions. We developed an automated DL-guided three-dimensional whole lung and infected regions segmentation in COVID-19 patients to provide fast, consistent, robust, and human error immune framework for lung and pneumonia lesion detection and quantification.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Dariush Askari
- Department of Radiology TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Shakiba Moradi
- Research and Development DepartmentMed Fanavaran Plus Co.KarajIran
| | - Zahra Mansouri
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
| | - Masoumeh Pakbin
- Clinical Research Development CenterQom University of Medical SciencesQomIran
| | - Saleh Sandoughdaran
- Men's Health and Reproductive Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hamid Abdollahi
- Department of Radiologic Technology, Faculty of Allied MedicineKerman University of Medical SciencesKermanIran
| | - Amir Reza Radmard
- Department of RadiologyShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Kiara Rezaei‐Kalantari
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mostafa Ghelich Oghli
- Research and Development DepartmentMed Fanavaran Plus Co.KarajIran
- Department of Cardiovascular SciencesKU LeuvenLeuvenBelgium
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
- Geneva University NeurocenterGeneva UniversityGenevaSwitzerland
- Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenNetherlands
- Department of Nuclear MedicineUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|