1
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
2
|
Wanstall HC, Korysko P, Farabolini W, Corsini R, Bateman JJ, Rieker V, Hemming A, Henthorn NT, Merchant MJ, Santina E, Chadwick AL, Robertson C, Malyzhenkov A, Jones RM. VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint. Sci Rep 2024; 14:14803. [PMID: 38926450 PMCID: PMC11208499 DOI: 10.1038/s41598-024-65055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.
| | - Pierre Korysko
- University of Oxford, Oxford, OX1 2JD, UK
- CERN, Geneva, 1211, Geneva 23, Switzerland
| | | | | | | | - Vilde Rieker
- CERN, Geneva, 1211, Geneva 23, Switzerland
- University of Oslo, 0316, Oslo, Norway
| | - Abigail Hemming
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nicholas T Henthorn
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | | | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK
| |
Collapse
|
3
|
Naceur A, Bienvenue C, Romano P, Chilian C, Carrier JF. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. Sci Rep 2024; 14:2796. [PMID: 38307920 PMCID: PMC11226718 DOI: 10.1038/s41598-023-51143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024] Open
Abstract
Focused Very-High Energy Electron (VHEE, 50-300 MeV) and Ultra-High Energy Electron (UHEE, > 300 MeV) beams can accurately target both large and deeply seated human tumors with high sparing properties, while avoiding the spatial requirements and cost of proton and heavy ion facilities. Advanced testing phases are underway at the CLEAR facilities at CERN (Switzerland), NLCTA at Stanford (USA), and SPARC at INFN (Italy), aiming to accelerate the transition to clinical application. Currently, Monte Carlo (MC) transport is the sole paradigm supporting preclinical trials and imminent clinical deployment. In this paper, we propose an alternative: the first extension of the nuclear-reactor deterministic chain NJOY-DRAGON for VHEE and UHEE applications. We have extended the Boltzmann-Fokker-Planck (BFP) multigroup formalism and validated it using standard radio-oncology benchmarks, complex assemblies with a wide range of atomic numbers, and comprehensive irradiation of the entire periodic table. We report that [Formula: see text] of water voxels exhibit a BFP-MC deviation below [Formula: see text] for electron energies under [Formula: see text]. Additionally, we demonstrate that at least [Formula: see text] of voxels of bone, lung, adipose tissue, muscle, soft tissue, tumor, steel, and aluminum meet the same criterion between [Formula: see text] and [Formula: see text]. For water, the thorax, and the breast intra-operative benchmark, typical average BFP-MC deviations of [Formula: see text] and [Formula: see text] were observed at [Formula: see text] and [Formula: see text], respectively. By irradiating the entire periodic table, we observed similar performance between lithium ([Formula: see text]) and cerium ([Formula: see text]). Deficiencies observed between praseodymium ([Formula: see text]) and einsteinium ([Formula: see text]) have been reported, analyzed, and quantified, offering critical insights for the ongoing development of the Evaluated Nuclear Data File mode in NJOY.
Collapse
Affiliation(s)
- Ahmed Naceur
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada.
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada.
| | - Charles Bienvenue
- École Polytechnique, Engineering Physics Department, Biomedical Engineering Institute, Montréal, H3T1J4, Canada
| | - Paul Romano
- Computational Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Cornelia Chilian
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada
| | - Jean-François Carrier
- Department of Physics, Université de Montréal, Montréal, H3T1J4, Canada
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada
| |
Collapse
|
4
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
5
|
Horváth D, Grittani G, Precek M, Versaci R, Bulanov SV, Olšovcová V. Time dynamics of the dose deposited by relativistic ultra-short electron beams. Phys Med Biol 2023; 68:22NT01. [PMID: 37797651 DOI: 10.1088/1361-6560/ad00a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Ultra-short electron beams are used as ultra-fast radiation source for radiobiology experiments aiming at very high energy electron beams (VHEE) radiotherapy with very high dose rates. Laser plasma accelerators are capable of producing electron beams as short as 1 fs and with tunable energy from few MeV up to multi-GeV with compact footprint. This makes them an attractive source for applications in different fields, where the ultra-short (fs) duration plays an important role. The time dynamics of the dose deposited by electron beams with energies in the range 50-250 MeV have been studied and the results are presented here. The results set a quantitative limit to the maximum dose rate at which the electron beams can impart dose.
Collapse
Affiliation(s)
- D Horváth
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - G Grittani
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - M Precek
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - R Versaci
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - S V Bulanov
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - V Olšovcová
- ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| |
Collapse
|
6
|
Song H, Kim Y, Sung W. Modeling of the FLASH effect for ion beam radiation therapy. Phys Med 2023; 108:102553. [PMID: 37021608 DOI: 10.1016/j.ejmp.2023.102553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/11/2023] Open
Abstract
PURPOSE Normal tissue sparing has been shown in preclinical studies under the ultra-fast dose rate condition, so-called FLASH radiotherapy. The preclinical and clinical FLASH studies are being conducted with various radiation modalities such as photons, protons, and heavy ions. The aim of this study is to propose a model to predict the dependency of the FLASH effect on linear energy transfer (LET) by quantifying the oxygen depletion. METHODS We develop an analytical model to examine the FLASH sparing effect by incorporating time-varying oxygen depletion equation and oxygen enhancement ratios according to LET. The variations in oxygen enhancement ratio (OER) are quantified over time with different dose rate (Gy/s) and LET (keV/μm). The FLASH sparing effect (FSE) is defined as the ratio of DFLASH/Dconv where Dconv is the reference absorbed dose delivered at the conventional dose rate, and DFLASH is the absorbed dose delivered at a high dose rate that causes the same amount of biological damage. RESULTS Our model suggests that the FLASH effect is significant only when the oxygen amount is at an intermediate level (10 ∼ 100 mmHg). The FSE is increased as LET decreases, suggesting that LET less than 100 keV/μm is required to induce FLASH sparing effects in normal tissue. CONCLUSIONS Oxygen depletion and recovery provide a quantitative model to understand the FLASH effect. These results highlight the FLASH sparing effects in normal tissue under the conditions with the intermediate oxygen level and low-LET region.
Collapse
|
7
|
Zhang G, Zhang Z, Gao W, Quan H. Treatment planning consideration for very high-energy electron FLASH radiotherapy. Phys Med 2023; 107:102539. [PMID: 36804694 DOI: 10.1016/j.ejmp.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Very high-energy electron (VHEE) can make up the insufficient treatment depth of the low-energy electron while offering an intermediate dosimetric advantage between photon and proton. Combining FLASH with VHEE, a quantitative comparison between different energies was made, with regard to plan quality, dose rate distribution (both in PTV and OAR), and total duration of treatment (beam-on time). METHODS In two patient cases (head and lung), we created the treatment plans utilizing the scanning pencil beam via the Monte Carlo simulation and a PTV-based optimization algorithm. Geant4 was used to simulate VHEE pencil beams and sizes of 0.3-5 mm defined by the full width at half maximum (FWHM). Monoenergetic beams with Gaussian distribution in x and y directions (ISOURC = 19) were used as the source of electrons. A large-scale non-linear solver (IPOPT) was used to calculate the optimal spot weights. After optimization, a quantitative comparison between different energies was made regarding treatment plan quality, dose rate distribution (both in PTV and OAR), and total beam duration. RESULTS For head (80 MeV, 100 MeV, and 120 MeV) and lung cases (100 MeV, 120 MeV, and 140 MeV), the minimum beam intensity needs to be ∼2.5 × 1011 electrons/s and ∼9.375 × 1011 electrons/s to allow > 90 % volume of PTV reaching the average dose rate (DADR) higher than 40 Gy/s. At this beam intensity (fraction dose: 10 Gy), the overall irradiation time for the head case is 5258.75 ms (80 MeV), 5149.75 ms (100 MeV), and 4976.75 ms (120 MeV), including scanning time 872.75 ms. For lung cases, this number is 1034.25 ms (100 MeV), 981.55 ms (120 MeV), and 928.15 ms (140 MeV), including scanning time 298.75 ms. The plan of higher energy always performs with a higher dose rate (both in PTV and OAR) and thereby costs less delivery time (beam-on time). CONCLUSION The study systematically investigated the currently known FLASH parameters for VHEE radiotherapy and successfully established a benchmark reference for its FLASH dose rate performance.
Collapse
Affiliation(s)
- Guoliang Zhang
- School of Physics and Technology, Wuhan University, 430072, China
| | - Zhengzhao Zhang
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, China
| | - Wenchao Gao
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, China
| | - Hong Quan
- School of Physics and Technology, Wuhan University, 430072, China.
| |
Collapse
|