1
|
Tousizadeh S, Mohammadi-Moghadam F, Sadeghi R, Ahmadi A, Shakeri K. Investigation of the levels of essential and non-essential metals in women with and without abortion history: A study based on the Persian population of the Shahrekord cohort. CHEMOSPHERE 2023; 329:138434. [PMID: 37001760 DOI: 10.1016/j.chemosphere.2023.138434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Spontaneous abortion is a serious threat to the mothers' physical and mental well-being. The cause of spontaneous abortion is multifactorial disease. Prenatal non-essential metal exposure, particularly heavy metals, has been suggested to be associated with adverse pregnancy and birth outcomes. The purpose of this study was to investigate the relationship between the concentration of essential and non-essential metals including Pb, As, Zn, and Se and the risk of spontaneous abortion. In this case-control study the levels of Pb, As, Zn, and Se in the whole blood of 60 women with spontaneous abortion (case group) and also 60 women without spontaneous abortion (control group) were measured by atomic absorption spectrophotometry. Results revealed statistically significant reductions (P < 0.001) in whole blood levels of Zn and Se as well as the levels of As and Pb had a substantial elevation (P < 0.001) in cases compared to controls. According to the findings, repeated spontaneous abortion may be influenced by increasing whole blood levels of heavy metals such as As (OR = 17.53, P = 0.001) and Pb (OR = 15.58, P = 0.001) as well as decreasing levels of vital micronutrients Zn (OR = 0.20, P = 0.001) and Se (OR = 0.14, P = 0.001). The results of this study support the idea that limiting intake of non-essential metals during pregnancy can decrease the risk of spontaneous abortion. Overall, the information presented is expected to help plan future fundamental and applied investigations on the spontaneous abortion.
Collapse
Affiliation(s)
- Sepideh Tousizadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran; Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ramezan Sadeghi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Ali Ahmadi
- Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kobra Shakeri
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Yue H, Li S, Qin J, Gao T, Lyu J, Liu Y, Wang X, Guan Z, Zhu Z, Niu B, Zhong R, Guo J, Wang J. Down-Regulation of Inpp5e Associated With Abnormal Ciliogenesis During Embryonic Neurodevelopment Under Inositol Deficiency. Front Neurol 2021; 12:579998. [PMID: 34093381 PMCID: PMC8170399 DOI: 10.3389/fneur.2021.579998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inositol polyphosphate-5-phosphatase E (Inpp5e) gene is located on chromosome 9q34.3. The enzyme it encodes mainly hydrolyzes the 5-phosphate groups of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) and phosphatidylinositol (4,5)-bisphosphate (PtdIns (4,5)P2), which are closely related to ciliogenesis and embryonic neurodevelopment, through mechanisms that are largely unknown. Here we studied the role of Inpp5e gene in ciliogenesis during embryonic neurodevelopment using inositol-deficiency neural tube defects (NTDs) mouse and cell models. Confocal microscopy and scanning electron microscope were used to examine the number and the length of primary cilia. The dynamic changes of Inpp5e expression in embryonic murine brain tissues were observed during Embryonic Day 10.5-13.5 (E 10.5-13.5). Immunohistochemistry, western blot, polymerase chain reaction (PCR) arrays were applied to detect the expression of Inpp5e and cilia-related genes of the embryonic brain tissues in inositol deficiency NTDs mouse. Real-time quantitative PCR (RT-qPCR) was used to validate the candidate genes in cell models. The levels of inositol and PtdIns(3,4) P2 were measured using gas chromatography-mass spectrometry (GC-MS) and enzyme linked immunosorbent assay (ELISA), respectively. Our results showed that the expression levels of Inpp5e gradually decreased in the forebrain tissues of the control embryos, but no stable trend was observed in the inositol deficiency NTDs embryos. Inpp5e expression in inositol deficiency NTDs embryos was significantly decreased compared with the control tissues. The expression levels of Inpp5e gene and the PtdIns (3,4) P2 levels were also significantly decreased in the inositol deficient cell model. A reduced number and length of primary cilia were observed in NIH3T3 cells when inositol deficient. Three important cilia-related genes (Ift80, Mkks, Smo) were down-regulated significantly in the inositol-deficient NTDs mouse and cell models, and Smo was highly involved in NTDs. In summary, these findings suggested that down-regulation of Inpp5e might be associated with abnormal ciliogenesis during embryonic neurodevelopment, under conditions of inositol deficiency.
Collapse
Affiliation(s)
- Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jiaxing Qin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Tingting Gao
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
| | - Yu Liu
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Inositol for the prevention of gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Arch Gynecol Obstet 2018; 299:55-68. [DOI: 10.1007/s00404-018-5005-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
|
4
|
Greene NDE, Leung KY, Copp AJ. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res 2017; 109:68-80. [PMID: 27324558 PMCID: PMC5353661 DOI: 10.1002/bdra.23533] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD-affected pregnancy, but does not prevent all NTDs, and "folic acid non-responsive" NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate-deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol-containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo-inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD-affected pregnancies. In nonrandomized cohorts and a randomized double-blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger-scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68-80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Omeljaniuk WJ, Socha K, Borawska MH, Charkiewicz AE, Laudański T, Kulikowski M, Kobylec E. Antioxidant status in women who have had a miscarriage. Adv Med Sci 2015; 60:329-34. [PMID: 26233636 DOI: 10.1016/j.advms.2015.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/06/2015] [Accepted: 06/15/2015] [Indexed: 01/26/2023]
Abstract
PURPOSE During normal pregnancy there is an oxido-reductive balance between action of pro-oxidative factors. The aim of this study was to evaluate the total antioxidant status (TAS) and glutathione peroxidase (GSH-Px) activity, and the content of selenium (Se), zinc (Zn), copper (Cu) and manganese (Mn) in women who have had a miscarriage. PATIENTS AND METHODS The study group consisted of 83 women who had had miscarriages. The control group included 35 women in the first trimester of pregnancy, and 35 pregnant women after childbirth. RESULTS TAS activity and Cu concentration in serum in women who experienced a miscarriage were significantly lower, but Mn level - higher, than in women in the first trimester of pregnancy. The content of Se, Cu and Mn in placental tissue in patients who have had a miscarriage was significantly higher, while Zn content was lower than in pregnant women at full-term delivery. CONCLUSIONS Our findings, provided in the research, enable us to claim that the total antioxidative status is significantly lower in women who have had a miscarriage. Low level of Zn but high of Mn in the examined biological material may be indicative to the incidence of miscarriage.
Collapse
Affiliation(s)
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Bialystok, Poland
| | - Maria H Borawska
- Department of Bromatology, Medical University of Bialystok, Bialystok, Poland.
| | | | - Tadeusz Laudański
- Department of Perinatology, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Marek Kulikowski
- Department of Perinatology, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Edward Kobylec
- Division of Obstetrics and Pathology of Pregnancy, SPZOZ District Hospital in Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:841749. [PMID: 21918714 PMCID: PMC3171895 DOI: 10.1155/2011/841749] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/06/2011] [Indexed: 01/26/2023]
Abstract
Pregnancy places increased demands on the mother to provide adequate nutrition to the growing conceptus. A number of micronutrients function as essential cofactors for or themselves acting as antioxidants. Oxidative stress is generated during normal placental development; however, when supply of antioxidant micronutrients is limited, exaggerated oxidative stress within both the placenta and maternal circulation occurs, resulting in adverse pregnancy outcomes. The present paper summarises the current understanding of selected micronutrient antioxidants selenium, copper, zinc, manganese, and vitamins C and E in pregnancy. To summarise antioxidant activity of selenium is via its incorporation into the glutathione peroxidase enzymes, levels of which have been shown to be reduced in miscarriage and preeclampsia. Copper, zinc, and manganese are all essential cofactors for superoxide dismutases, which has reduced activity in pathological pregnancy. Larger intervention trials are required to reinforce or refute a beneficial role of micronutrient supplementation in disorders of pregnancies.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Division of Women's Health, Maternal and Fetal Research Unit, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Paula J. Williams
- Human Genetics, School of Molecular and Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|