1
|
Thomsen CR, Jensen MSS, Bor P, Hinge M, Sandager P, Uldbjerg N. Recommendations for strain elastography of the uterine cervix. Arch Gynecol Obstet 2024; 310:2023-2033. [PMID: 39198283 PMCID: PMC11393049 DOI: 10.1007/s00404-024-07693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE Conventional vaginal strain ultrasound elastography, not based on shear-wave elastography imaging, can assess the biomechanical properties of the uterine cervix. This assessment may inform the risks of preterm birth and failed induction of labor. However, there is considerable variation in the approaches to strain elastography, including the placement of the region of interest (ROI). Therefore, our aim was to provide recommendations for cervical elastography. METHODS We conducted a literature review on (1) elastography principles, and (2) the cervical anatomy. Subsequently, we performed elastography scanning using a Voluson™ E10 Expert scanner with the BT18 software of (3) polyacrylamide hydrogel simulators, and (4) pregnant women. RESULTS Increasing the distance between the ROI and probe led to a decrease in the obtained strain value; a 53% decrease was observed at 17.5 mm. Similarly, an increased angle between the ROI and probe-centerline resulted in a 59% decrease for 40° angle. Interposition of soft tissue (e.g., cervical canal) between the ROI and the probe induced an artifact with values from the posterior lip being 54% lower than those from the anterior lip, even after adjusting for probe-ROI distance. Equipment and the recording conductance significantly influenced the results. CONCLUSION Our findings inform recommendations for future studies on strain cervical elastography.
Collapse
Affiliation(s)
- Christine Rohr Thomsen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
- Department of Obstetrics and Gynecology, Randers Regional Hospital, Randers NØ, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maria Strandbo Schmidt Jensen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pinar Bor
- Department of Obstetrics and Gynecology, Randers Regional Hospital, Randers NØ, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mogens Hinge
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus N, Denmark
| | - Puk Sandager
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Fidalgo DS, Jorge RMN, Parente MPL, Louwagie EM, Malanowska E, Myers KM, Oliveira DA. Pregnancy state before the onset of labor: a holistic mechanical perspective. Biomech Model Mechanobiol 2024; 23:1531-1550. [PMID: 38758337 PMCID: PMC11436406 DOI: 10.1007/s10237-024-01853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Successful pregnancy highly depends on the complex interaction between the uterine body, cervix, and fetal membrane. This interaction is synchronized, usually following a specific sequence in normal vaginal deliveries: (1) cervical ripening, (2) uterine contractions, and (3) rupture of fetal membrane. The complex interaction between the cervix, fetal membrane, and uterine contractions before the onset of labor is investigated using a complete third-trimester gravid model of the uterus, cervix, fetal membrane, and abdomen. Through a series of numerical simulations, we investigate the mechanical impact of (i) initial cervical shape, (ii) cervical stiffness, (iii) cervical contractions, and (iv) intrauterine pressure. The findings of this work reveal several key observations: (i) maximum principal stress values in the cervix decrease in more dilated, shorter, and softer cervices; (ii) reduced cervical stiffness produces increased cervical dilation, larger cervical opening, and decreased cervical length; (iii) the initial cervical shape impacts final cervical dimensions; (iv) cervical contractions increase the maximum principal stress values and change the stress distributions; (v) cervical contractions potentiate cervical shortening and dilation; (vi) larger intrauterine pressure (IUP) causes considerably larger stress values and cervical opening, larger dilation, and smaller cervical length; and (vii) the biaxial strength of the fetal membrane is only surpassed in the cases of the (1) shortest and most dilated initial cervical geometry and (2) larger IUP.
Collapse
Affiliation(s)
- Daniel S Fidalgo
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), R. Dr. Roberto Frias 400, 4200-465, Porto, Portugal.
- Mechanical Department (DEMec), Faculty of Engineering of University of Porto (FEUP), R. Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Renato M Natal Jorge
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), R. Dr. Roberto Frias 400, 4200-465, Porto, Portugal
- Mechanical Department (DEMec), Faculty of Engineering of University of Porto (FEUP), R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Marco P L Parente
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), R. Dr. Roberto Frias 400, 4200-465, Porto, Portugal
- Mechanical Department (DEMec), Faculty of Engineering of University of Porto (FEUP), R. Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Erin M Louwagie
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ewelina Malanowska
- Department of Gynaecology, Endocrinology and Gynaecologic Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Dulce A Oliveira
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), R. Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| |
Collapse
|
3
|
Ramella-Roman JC, Mahendroo M, Raoux C, Latour G, Schanne-Klein MC. Quantitative Assessment of Collagen Remodeling during a Murine Pregnancy. ACS PHOTONICS 2024; 11:3536-3544. [PMID: 39310300 PMCID: PMC11413848 DOI: 10.1021/acsphotonics.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
Uterine cervical remodeling is a fundamental feature of pregnancy, facilitating the delivery of the fetus through the cervical canal. Yet, we still know very little about this process due to the lack of methodologies that can quantitatively and unequivocally pinpoint the changes the cervix undergoes during pregnancy. We utilize polarization-resolved second harmonic generation to visualize the alterations the cervix extracellular matrix, specifically collagen, undergoes during pregnancy with exquisite resolution. This technique provides images of the collagen orientation at the pixel level (0.4 μm) over the entire murine cervical section. They show tight and ordered packing of collagen fibers around the os at the early stage of pregnancy and their disruption at the later stages. Furthermore, we utilize a straightforward statistical analysis to demonstrate the loss of order in the tissue, consistent with the loss of mechanical properties associated with this process. This work provides a deeper understanding of the parturition process and could support research into the cause of pathological or premature birth.
Collapse
Affiliation(s)
- Jessica C. Ramella-Roman
- Biomedical
Engineering Department, Florida International
University, Miami, Florida 33174, United States
| | - Mala Mahendroo
- Department
of Obstetrics and Gynecology, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Clothilde Raoux
- Laboratory
for Optics and Biosciences (LOB), École Polytechnique, CNRS,
Inserm, Institut Polytechnique de Paris, Palaiseau 91120, France
| | - Gaël Latour
- Laboratory
for Optics and Biosciences (LOB), École Polytechnique, CNRS,
Inserm, Institut Polytechnique de Paris, Palaiseau 91120, France
- Université
Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Marie-Claire Schanne-Klein
- Laboratory
for Optics and Biosciences (LOB), École Polytechnique, CNRS,
Inserm, Institut Polytechnique de Paris, Palaiseau 91120, France
| |
Collapse
|
4
|
Fang S, Shi L, Vink JSY, Feltovich H, Hall TJ, Myers KM. Equilibrium Mechanical Properties of the Nonhuman Primate Cervix. J Biomech Eng 2024; 146:081001. [PMID: 38270929 PMCID: PMC10983698 DOI: 10.1115/1.4064558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/26/2024]
Abstract
Cervical remodeling is critical for a healthy pregnancy. Premature tissue changes can lead to preterm birth (PTB), and the absence of remodeling can lead to post-term birth, causing significant morbidity. Comprehensive characterization of cervical material properties is necessary to uncover the mechanisms behind abnormal cervical softening. Quantifying cervical material properties during gestation is challenging in humans. Thus, a nonhuman primate (NHP) model is employed for this study. In this study, cervical tissue samples were collected from Rhesus macaques before pregnancy and at three gestational time points. Indentation and tension mechanical tests were conducted, coupled with digital image correlation (DIC), constitutive material modeling, and inverse finite element analysis (IFEA) to characterize the equilibrium material response of the macaque cervix during pregnancy. Results show, as gestation progresses: (1) the cervical fiber network becomes more extensible (nonpregnant versus pregnant locking stretch: 2.03 ± 1.09 versus 2.99 ± 1.39) and less stiff (nonpregnant versus pregnant initial stiffness: 272 ± 252 kPa versus 43 ± 43 kPa); (2) the ground substance compressibility does not change much (nonpregnant versus pregnant bulk modulus: 1.37 ± 0.82 kPa versus 2.81 ± 2.81 kPa); (3) fiber network dispersion increases, moving from aligned to randomly oriented (nonpregnant versus pregnant concentration coefficient: 1.03 ± 0.46 versus 0.50 ± 0.20); and (4) the largest change in fiber stiffness and dispersion happen during the second trimester. These results, for the first time, reveal the remodeling process of a nonhuman primate cervix and its distinct regimes throughout the entire pregnancy.
Collapse
Affiliation(s)
- Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Joy-Sarah Y. Vink
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10027
| | - Helen Feltovich
- Department of Maternal Fetal Medicine, Intermountain Healthcare, Park City, UT 84060
| | - Timothy J. Hall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53706
| | - Kristin M. Myers
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
5
|
Wu W, Sun Z, Gao H, Nan Y, Pizzella S, Xu H, Lau J, Lin Y, Wang H, Woodard PK, Krigman HR, Wang Q, Wang Y. Whole cervix imaging of collagen, muscle, and cellularity in term and preterm pregnancy. Nat Commun 2024; 15:5942. [PMID: 39030173 PMCID: PMC11271604 DOI: 10.1038/s41467-024-48680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 05/08/2024] [Indexed: 07/21/2024] Open
Abstract
Cervical softening and dilation are critical for the successful term delivery of a fetus, with premature changes associated with preterm birth. Traditional clinical measures like transvaginal ultrasound and Bishop scores fall short in predicting preterm births and elucidating the cervix's complex microstructural changes. Here, we introduce a magnetic resonance diffusion basis spectrum imaging (DBSI) technique for non-invasive, comprehensive imaging of cervical cellularity, collagen, and muscle fibers. This method is validated through ex vivo DBSI and histological analyses of specimens from total hysterectomies. Subsequently, retrospective in vivo DBSI analysis at 32 weeks of gestation in ten term deliveries and seven preterm deliveries with inflammation-related conditions shows distinct microstructural differences between the groups, alongside significant correlations with delivery timing. These results highlight DBSI's potential to improve understanding of premature cervical remodeling and aid in the evaluation of therapeutic interventions for at-risk pregnancies. Future studies will further assess DBSI's clinical applicability.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhexian Sun
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hansong Gao
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University, St. Louis, MO, USA
| | - Yuan Nan
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University, St. Louis, MO, USA
| | - Stephanie Pizzella
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haonan Xu
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Josephine Lau
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiqi Lin
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University, St. Louis, MO, USA
| | - Hui Wang
- Department of Physics, Washington University, St. Louis, MO, USA
| | - Pamela K Woodard
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah R Krigman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qing Wang
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Yong Wang
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Zhang M, Li S, Tian C, Li M, Zhang B, Yu H. Changes of uterocervical angle and cervical length in early and mid-pregnancy and their value in predicting spontaneous preterm birth. Front Physiol 2024; 15:1304513. [PMID: 38577623 PMCID: PMC10991810 DOI: 10.3389/fphys.2024.1304513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Objective: To explore the feasibility of transvaginal ultrasound measurement of uterocervical angle (UCA) and cervical length (CL) in early and mid-pregnancy and evaluate their combined prediction of spontaneous preterm birth (sPTB) in singleton pregnancies. Patients and Methods: This retrospective study comprised 274 pregnant women who underwent transvaginal ultrasound measurement of CL in mid-pregnancy (15-23+6 weeks); in 75 among them, CL also had been measured in early-pregnancy (<14 weeks). These 274 pregnant women were further divided into a preterm group (n = 149, <37 weeks gestation) and a control group (n = 125, >37 weeks gestation) according to delivery before or after 37 weeks, respectively. In the preterm group, 35 patients delivered before 34 weeks and the remaining 114 delivered between 34 and 37 weeks. Results: The optimal threshold of CL to predict preterm birth risk in women with <37 weeks gestation was 3.38 cm, and the optimal threshold of the UCA to predict preterm birth risk in the same group of women was 96°. The optimal threshold of CL to predict preterm birth risk in women with <34 weeks gestation was 2.54 cm, while that of the UCA in the same group of patients was 106°. The area under the curve for predicting preterm birth by combining the UCA and CL measurements was greater than that by using the UCA or CL alone (p < 0.01). The sensitivity and specificity for predicting preterm birth at <34 weeks gestation was 71.7% and 86.4%, respectively; and the sensitivity and specificity for predicting preterm birth at <37 weeks gestation was 87.6% and 80.6%, respectively. The difference between the two groups in CL and UCA were not significant in early pregnancy (p > 0.01), but only in mid-pregnancy (p < 0.01). There was a negative correlation between UCA and gestational week at delivery (r = -0.361, p < 0.001) and a positive correlation between CL and gestational week at delivery (r = 0.346, p < 0.001) in mid-pregnancy. The proportion of deliveries at <34 weeks was highest when the UCA was >105°, and the proportion of deliveries between 35 and 37 weeks was highest when the UCA was between 95° and 105°. The proportion of deliveries at <34 weeks was highest when the CL was <2.5 cm. Conclusion: The combination of UCA and CL has a better ability to predict preterm birth than either measurement alone. A more obtuse UCA or a shorter CL is associated with an earlier spontaneous preterm birth. The UCA increases from early to mid-pregnancy, while the CL decreases from early to mid-pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongkui Yu
- Department of Sonography, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Kurt I, Kulhan M, AlAshqar A, Borahay MA. Uterine Collagen Cross-Linking: Biology, Role in Disorders, and Therapeutic Implications. Reprod Sci 2024; 31:645-660. [PMID: 37907804 DOI: 10.1007/s43032-023-01386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Collagen is an essential constituent of the uterine extracellular matrix that provides biomechanical strength, resilience, structural integrity, and the tensile properties necessary for the normal functioning of the uterus. Cross-linking is a fundamental step in collagen biosynthesis and is critical for its normal biophysical properties. This step occurs enzymatically via lysyl oxidase (LOX) or non-enzymatically with the production of advanced glycation end-products (AGEs). Cross-links found in uterine tissue include the reducible dehydro-dihydroxylysinonorleucine (deH-DHLNL), dehydro-hydroxylysinonorleucine (deH-HLNL), and histidinohydroxymerodesmosine (HHMD); and the non-reducible pyridinoline (PYD), deoxy-pyridinoline (DPD); and a trace of pentosidine (PEN). Collagen cross-links are instrumental for uterine tissue integrity and the continuation of a healthy pregnancy. Decreased cervical cross-link density is observed in preterm birth, whereas increased tissue stiffness caused by increased cross-link density is a pathogenic feature of uterine fibroids. AGEs disrupt embryo development, decidualization, implantation, and trophoblast invasion. Uterine collagen cross-linking regulators include steroid hormones, such as progesterone and estrogen, prostaglandins, proteoglycans, metalloproteinases, lysyl oxidases, nitric oxide, nicotine, and vitamin D. Thus, uterine collagen cross-linking presents an opportunity to design therapeutic targets and warrants further investigation in common uterine disorders, such as uterine fibroids, cervical insufficiency, preterm birth, dystocia, endometriosis, and adenomyosis.
Collapse
Affiliation(s)
- Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Selcuk University Faculty of Medicine, 42000, Konya, Turkey
| | - Mehmet Kulhan
- Department of Gynecology and Obstetrics, Selcuk University Faculty of Medicine, 42000, Konya, Turkey
| | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Rohr Thomsen C, Leonhard AK, Strandbo Schmidt Jensen M, Bor P, Hinge M, Uldbjerg N, Sandager P. Quantitative strain elastography of the uterine cervix assessed by the GE Voluson E10 system in combination with a force-measuring device. J Matern Fetal Neonatal Med 2023; 36:2213797. [PMID: 37202178 DOI: 10.1080/14767058.2023.2213797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE During pregnancy, the stiffness of the cervical tissue decreases long before the cervical length decreases. Therefore, several approaches have been proposed in order to ensure a more objective assessment of cervical stiffness than that achieved by digital evaluation. Strain elastography has shown promising results. This technique is based on an ultrasound assessment of the tissue deformation that occurs when the examiner applies pressure on the tissue with the ultrasound probe. However, the results are only semi-quantitative as they depend on the unmeasured force used by the examiner. We, therefore, hypothesized that a force-measuring device applied to the handle of the ultrasound probe may render the technique quantitative. With this approach, the stiffness is the force (measured by the device) divided by the compression (measured by the elastography platform). One perspective is the early identification of women at risk of preterm birth in whom cervical stiffness may decrease long before cervical shortening. Another perspective is cervical evaluation when planning labor induction. In this feasibility study, we aimed to evaluate how quantitative strain elastography performs when a commercially available strain elastography platform (by which the algorithm is unavailable) is combined with a custom-made, force-measuring device. We studied how the assessments were associated with the gestational age in women with uncomplicated pregnancies and how they were associated with cervical dilatation time from 4 to 10 cm in women undergoing labor induction. METHODS In the analysis, we included quantitative strain elastography assessments from 47 women with uncomplicated singleton pregnancies, with gestational age between 12+0 and 40+0, and from 27 singleton term-pregnant women undergoing labor induction. The force-measuring device was mounted on the handle of a transvaginal probe. The strain values (i.e. the compression of the cervical tissue) were obtained by the elastography software of the ultrasound scanner (GE Voluson E10). The region of interest was placed within the central part of the anterior cervical lip. Based on the force data and strain values, we calculated the outcomes cervical elastography indexGE (CEIGE) and the cervical strength indexGE (CEIGE x cervical length: CSIGE). RESULTS The average CEIGE was 0.24 N at week 12 and 0.15 N at week 30-34. For CSIGE these figures were 8.2 and 4.7 N mm, respectively (p = 0.002). Among women undergoing labor induction, the CEIGE was associated with a cervical dilatation time (4-10 cm) beyond 7 h. For nulliparous women, this area under the ROC curve was 0.94. CONCLUSION Quantitative strain elastography may constitute a tool for the evaluation of a uterine cervix with normal length in women at risk of preterm birth and in women undergoing labor induction. The performance of this tool deserves evaluation in larger clinical trials.
Collapse
Affiliation(s)
- Christine Rohr Thomsen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Randers Regional Hospital, Randers, Denmark
- Department of Clinical Medicine, University of Aarhus
| | - Anne Katrine Leonhard
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus
| | - Maria Strandbo Schmidt Jensen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus
- Department of Clinical Medicine, Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
| | - Pinar Bor
- Department of Obstetrics and Gynecology, Randers Regional Hospital, Randers, Denmark
- Department of Clinical Medicine, University of Aarhus
| | - Mogens Hinge
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus
| | - Puk Sandager
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus
- Department of Clinical Medicine, Center for Fetal Diagnostics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Yoshida K. Bioengineering and the cervix: The past, current, and future for addressing preterm birth. Curr Res Physiol 2023; 6:100107. [PMID: 38107784 PMCID: PMC10724223 DOI: 10.1016/j.crphys.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The uterine cervix plays two important but opposing roles during pregnancy - as a mechanical barrier that maintains the fetus for nine months and as a compliant structure that dilates to allow for the delivery of a baby. In some pregnancies, however, the cervix softens and dilates prematurely, leading to preterm birth. Bioengineers have addressed and continue to address the lack of reduction in preterm birth rates by developing novel technologies to diagnose, prevent, and understand premature cervical remodeling. This article highlights these existing and emerging technologies and concludes with open areas of research related to the cervix and preterm birth that bioengineers are currently well-positioned to address.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
10
|
Shi L, Myers K. A finite porous-viscoelastic model capturing mechanical behavior of human cervix under multi-step spherical indentation. J Mech Behav Biomed Mater 2023; 143:105875. [PMID: 37187153 PMCID: PMC10330483 DOI: 10.1016/j.jmbbm.2023.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
The cervix is a soft tissue exhibiting time-dependent behavior under mechanical loads. The cervix is a vital mechanical barrier to protect the growing fetus. The remodeling of the cervical tissue, characterized by an increase in time-dependent material properties, is necessary for a safe parturition. The failure of its mechanical function and accelerated tissue remodeling is hypothesized to lead to preterm birth, which is birth before 37 weeks of gestation. To understand the mechanism of the time-dependent behavior of the cervix under compressive states, we employ a porous-viscoelastic material model to describe a set of spherical indentation tests performed on nonpregnant and term pregnant tissue. A genetic algorithm-based inverse finite element analysis is used to fit the force-relaxation data by optimizing the material parameters, and the statistical analysis of the optimized material parameters is conducted on different sample groups. The force response is captured well using the porous-viscoelastic model. The indentation force-relaxation of the cervix is explained by the porous effects and the intrinsic viscoelastic properties of the extracellular matrix (ECM) microstructure. The hydraulic permeability obtained from the inverse finite element analysis agrees with the trend of the value directly measured previously by our group. The nonpregnant samples are found significantly more permeable than the pregnant samples. Within nonpregnant samples, the posterior internal os is found significantly less permeable than the anterior and posterior external os. The proposed model exhibits the superior capability to capture the force-relaxation response of the cervix under indentation, as compared to the conventional quasi-linear viscoelastic framework (range of r2 of the porous-viscoelastic model 0.88-0.98 vs. quasi-linear model: 0.67-0.89). As a constitutive model with a relatively simple form, the porous-viscoelastic framework has the potential to be used to understand disease mechanisms of premature cervical remodeling, model contact of the cervix with biomedical devices, and interpret force readings from novel in-vivo measurement tools such as an aspiration device.
Collapse
Affiliation(s)
- Lei Shi
- Department of Mechanical Engineering, Columbia University, 500 W 120th St, MC 4703, New York, 10027, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, 500 W 120th St, MC 4703, New York, 10027, NY, USA.
| |
Collapse
|
11
|
Yamanokuchi E, Kitahara G, Kanemaru K, Hemmi K, Kobayashi I, Yamaguchi R, Osawa T. Inflammatory Changes and Composition of Collagen during Cervical Ripening in Cows. Animals (Basel) 2022; 12:ani12192646. [PMID: 36230388 PMCID: PMC9559414 DOI: 10.3390/ani12192646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Dystocia and stillbirths in cows pose a high risk of loss of both dams and fetuses, thereby resulting in high economic losses. One of the causes of these problems is birth canal abnormalities. Thus, to prevent these occurrences, it is necessary to understand the mechanisms underlying cervical ripening. Although physiological inflammatory responses and changes in collagen composition have been reported in humans and mice, related information is scarce for cows. We observed inflammatory changes and changes in the collagen composition in the cervix from late pregnancy to parturition to clarify some of the physiological changes associated with cervical ripening during normal calving in cows. Cervical mucus and tissue samples were collected from 41 Japanese Black cows at 200, 230, and 260 days of gestation and at 7-day intervals thereafter until parturition. The percentage of polymorphonuclear neutrophils (PMN%) in the mucus was calculated, and interleukin (IL)-8 concentration was determined by enzyme-linked immunosorbent assay. Blood samples were collected from the jugular vein, and leukocyte counts were determined. Picrosirius red-stained cervical tissue specimens were observed under a polarizing microscope, and the percentage of type I and type III collagen areas in the cervical tissue were calculated. The PMN% in cervical mucus was lowest at 200 days gestation (12−13 weeks before delivery), significantly increased 5 weeks before (21.7 ± 0.04), and was highest 1 week before calving (50.9 ± 0.04). IL-8 levels were increased at 295 days compared with those at 200 days of pregnancy (p < 0.05). No significant changes were observed in the white blood cell counts. The percentage of type I collagen in the cervical tissue reached a maximum (91.4 ± 0.02%) on day 200, significantly decreased after 274 days (3 weeks before calving), and continued to decrease thereafter until the week of parturition. There was no significant change in type III collagen levels. The results suggest that cervical ripening progresses when PMNs begin to infiltrate the cervix at around 260 days of gestation (5−4 weeks before parturition), IL-8, which increases at the end of pregnancy, mobilizes PMNs, and enhances inflammation, and that type I collagen changes are useful as an indicator of cervical ripening.
Collapse
Affiliation(s)
- Eigo Yamanokuchi
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Go Kitahara
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Kazuyuki Kanemaru
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Koichiro Hemmi
- Sumiyoshi Livestock Science Station, Field Science Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Ikuo Kobayashi
- Sumiyoshi Livestock Science Station, Field Science Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Osawa
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
- Correspondence: ; Tel.: +81-985-58-7787
| |
Collapse
|
12
|
Shi L, Hu L, Lee N, Fang S, Myers K. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix. Acta Biomater 2022; 150:277-294. [PMID: 35931278 DOI: 10.1016/j.actbio.2022.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
The mechanical function of the uterine cervix is critical for a healthy pregnancy. During pregnancy, the cervix undergoes significant softening to allow for a successful delivery. Abnormal cervical remodeling is suspected to contribute to preterm birth. Material constitutive models describing known biological shifts in pregnancy are essential to predict the mechanical integrity of the cervix. In this work, the material response of human cervical tissue under spherical indentation and uniaxial tensile tests loaded along different anatomical directions is experimentally measured. A deep-learning segmentation tool is applied to capture the tissue deformation during the uniaxial tensile tests. A 3-dimensional, equilibrium anisotropic continuous fiber constitutive model is formulated, considering collagen fiber directionality, fiber bundle dispersion, and the entropic nature of wavy cross-linked collagen molecules. Additionally, the universality of the material model is demonstrated by characterizing previously published mouse cervix mechanical data. Overall, the proposed material model captures the tension-compression asymmetric material responses and the remodeling characteristics of both human and mouse cervical tissue. The pregnant (PG) human cervix (mean locking stretch ζ=2.4, mean initial stiffness ξ=12 kPa, mean bulk modulus κ=0.26 kPa, mean dispersion b=1.0) is more compliant compared with the nonpregnant (NP) cervix (mean ζ=1.3, mean ξ=32 kPa, mean κ=1.4 kPa, mean b=1.4). Creating a validated material model, which describes the role of collagen fiber directionality, dispersion, and crosslinking, enables tissue-level biomechanical simulations to determine which material and anatomical factors drive the cervix to open prematurely. STATEMENT OF SIGNIFICANCE: In this study, we report a 3D anisotropic hyperelastic constitutive model based on Langevin statistical mechanics and successfully describe the material behavior of both human and mouse cervical tissue using this model. This model bridges the connection between the extracellular matrix (ECM) microstructure remodeling and the macro mechanical properties change of the cervix during pregnancy via microstructure-associated material parameters. This is the first model, to our knowledge, to connect the the entropic nature of wavy cross-linked collagen molecules with the mechanical behavior of the cervix. Inspired by microstructure, this model provides a foundation to understand further the relationship between abnormal cervical ECM remodeling and preterm birth. Furthermore, with a relatively simple form, the proposed model can be applied to other fibrous tissues in the future.
Collapse
Affiliation(s)
- Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lingfeng Hu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
13
|
Lee N, Shi L, Colon Caraballo M, Nallasamy S, Mahendroo M, Iozzo RV, Myers K. Mechanical Response of Mouse Cervices Lacking Decorin and Biglycan During Pregnancy. J Biomech Eng 2022; 144:061009. [PMID: 35348624 PMCID: PMC9125869 DOI: 10.1115/1.4054199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Cervical remodeling is critical for a healthy pregnancy. The proper regulation of extracellular matrix (ECM) turnover leads to remodeling throughout gestation, transforming the tissue from a stiff material to a compliant, extensible, viscoelastic tissue prepared for delivery. Small leucine-rich proteoglycans (SLRPs) regulate structural fiber assembly in the cervical ECM and overall tissue material properties. To quantify the SLRPs' mechanical role in the cervix, whole cervix specimens from nonpregnant and late pregnant knockout mice of SLRPs, decorin and biglycan, were subjected to cyclic load-unload, ramp-hold, and load-to-failure mechanical tests. Further, a fiber composite material model, accounting for collagen fiber bundle waviness, was developed to describe the cervix's three-dimensional large deformation equilibrium behavior. In nonpregnant tissue, SLRP knockout cervices have the same equilibrium material properties as wild-type tissue. In contrast, the load-to-failure and ramp-hold tests reveal SLRPs impact rupture and time-dependent relaxation behavior. Loss of decorin in nonpregnant (NP) cervices results in inferior rupture properties. After extensive remodeling, cervical strength is similar between all genotypes, but the SLRP-deficient tissue has a diminished ability to dissipate stress during a ramp-hold. In mice with a combined loss of decorin and biglycan, the pregnant cervix loses its extensibility, compliance, and viscoelasticity. These results suggest that decorin and biglycan are necessary for crucial extensibility and viscoelastic material properties of a healthy, remodeled pregnant cervix.
Collapse
Affiliation(s)
- Nicole Lee
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Mariano Colon Caraballo
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Shanmugasundaram Nallasamy
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
14
|
Moghaddam AO, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Johnson AJW. Heterogeneous microstructural changes of the cervix influence cervical funneling. Acta Biomater 2022; 140:434-445. [PMID: 34958969 PMCID: PMC8828692 DOI: 10.1016/j.actbio.2021.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The cervix acts as a dynamic barrier between the uterus and vagina, retaining the fetus during pregnancy and allowing birth at term. Critical to this function, the physical properties of the cervix change, or remodel, but abnormal remodeling can lead to preterm birth (PTB). Although cervical remodeling has been studied, the complex 3D cervical microstructure has not been well-characterized. In this complex, dynamic, and heterogeneous tissue microenvironment, the microstructural changes are likely also heterogeneous. Using quantitative, 3D, second-harmonic generation microscopy, we demonstrate that rat cervical remodeling during pregnancy is not uniform across the cervix; the collagen fibers orient progressively more perpendicular to the cervical canals in the inner cervical zone, but do not reorient in other regions. Furthermore, regions that are microstructurally distinct early in pregnancy become more similar as pregnancy progresses. We use a finite element simulation to show that heterogeneous regional changes influence cervical funneling, an important marker of increased risk for PTB; the internal cervical os shows ∼6.5x larger radial displacement when fibers in the inner cervical zone are parallel to the cervical canals compared to when fibers are perpendicular to the canals. Our results provide new insights into the microstructural and tissue-level cervical changes that have been correlated with PTB and motivate further clinical studies exploring the origins of cervical funneling. STATEMENT OF SIGNIFICANCE: Cervical funneling, or dilation of the internal cervical os, is highly associated with increased risk of preterm birth. This study explores the 3D microstructural changes of the rat cervix during pregnancy and illustrates how these changes influence cervical funneling, assuming similar evolution in rats and humans. Quantitative imaging showed that microstructural remodeling during pregnancy is nonuniform across cervical regions and that initially distinct regions become more similar. We report, for the first time, that remodeling of the inner cervical zone can influence the dilation of the internal cervical os and allow the cervix to stay closed despite increased intrauterine pressure. Our results suggest a possible relationship between the microstructural changes of this zone and cervical funneling, motivating further clinical investigations.
Collapse
Affiliation(s)
- A. Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Z. Lin
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - M. Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - H. Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - B. L. McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL 60612, USA
| | - K. C. Toussaint
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - A. J. Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding author at: 2101A Mechanical Engineering Laboratory MC-244, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, United States.
| |
Collapse
|
15
|
Singh PK, Srivastava R, Kumar I, Rai S, Pandey S, Shukla RC, Verma A. Evaluation of Uterocervical Angle and Cervical Length as Predictors of Spontaneous Preterm Birth. Indian J Radiol Imaging 2022; 32:10-15. [PMID: 35722650 PMCID: PMC9200462 DOI: 10.1055/s-0041-1741411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Abstract
Aim The aim of this article was to evaluate uterocervical angle (UCA) and cervical length (CL) measured at 16 to 24 weeks of gestation using transvaginal sonography (TVS) as predictors of spontaneous preterm birth.
Methods In this prospective study, TVS was performed in 159 primigravidas with a singleton, uncomplicated pregnancy at 16 to 24 weeks of gestation to measure the anterior UCA and CL. All the cases were followed until labor to document gestational age at delivery.
Results The risk of spontaneous preterm birth was higher in women with obtuse UCA (>95 degrees) with sensitivity of 86.7%, specificity of 93.0%, positive predictive value of 83.0%, negative predictive value of 94.6%, and p-value of <0.001. The difference between the means was statistically significant (p-value < 0.001). UCAs ≥105degrees and 95 to 105 degrees were found to be significantly associated with spontaneous preterm births at <34 weeks and 34 to 37 weeks, respectively. CL <2.5 cm was found to predict spontaneous preterm births at <37 weeks with sensitivity of 31.1%, specificity of 95.6%, and p-value of <0.001. UCA was found to be a better predictor of spontaneous preterm birth with a higher coefficient of variation (56.4%) when compared with CL (16.9%).
Conclusions UCA proved to be a novel ultrasound parameter that can serve as a better predictor of spontaneous preterm births in comparison to CL. A strong correlation exists between obtuse UCA and a risk of spontaneous preterm birth.
Collapse
Affiliation(s)
- Pramod Kumar Singh
- Department of Radiodiagnosis and Imaging, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Resham Srivastava
- Department of Radiodiagnosis and Imaging, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ishan Kumar
- Department of Radiodiagnosis and Imaging, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sangeeta Rai
- Department of Obstetrics and Gynaecology, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Saurabh Pandey
- Department of Radiodiagnosis and Imaging, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ram C. Shukla
- Department of Radiodiagnosis and Imaging, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, IMS, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Lithgow KV, Buchholz VCH, Ku E, Konschuh S, D'Aubeterre A, Sycuro LK. Protease activities of vaginal Porphyromonas species disrupt coagulation and extracellular matrix in the cervicovaginal niche. NPJ Biofilms Microbiomes 2022; 8:8. [PMID: 35190575 PMCID: PMC8861167 DOI: 10.1038/s41522-022-00270-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas asaccharolytica and Porphyromonas uenonis are common inhabitants of the vaginal microbiome, but their presence has been linked to adverse health outcomes for women, including bacterial vaginosis and preterm birth. However, little is known about the pathogenesis mechanisms of these bacteria. The related oral opportunistic pathogen, Porphyromonas gingivalis, is comparatively well-studied and known to secrete numerous extracellular matrix-targeting proteases. Among these are the gingipain family of cysteine proteases that drive periodontal disease progression and hematogenic transmission to the placenta. In this study, we demonstrate that vaginal Porphyromonas species secrete broad-acting proteases capable of freely diffusing within the cervicovaginal niche. These proteases degrade collagens that are enriched within the cervix (type I) and chorioamniotic membranes (type IV), as well as fibrinogen, which inhibits clot formation. Bioinformatic queries confirmed the absence of gingipain orthologs and identified five serine, cysteine, and metalloprotease candidates in each species. Inhibition assays revealed that each species' proteolytic activity can be partially attributed to a secreted metalloprotease with broad substrate specificity that is distantly related to the P. gingivalis endopeptidase PepO. This characterization of virulence activities in vaginal Porphyromonas species highlights their potential to alter the homeostasis of reproductive tissues and harm human pregnancy through clotting disruption, fetal membrane weakening, and premature cervical remodeling.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Vienna C H Buchholz
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Emily Ku
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Shaelen Konschuh
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Ana D'Aubeterre
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Laura K Sycuro
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
- International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Clark-Patterson GL, McGuire JA, Desrosiers L, Knoepp LR, De Vita R, Miller KS. Investigation of Murine Vaginal Creep Response to Altered Mechanical Loads. J Biomech Eng 2021; 143:1119395. [PMID: 34494082 DOI: 10.1115/1.4052365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/17/2023]
Abstract
The vagina is a viscoelastic fibromuscular organ that provides support to the pelvic organs. The viscoelastic properties of the vagina are understudied but may be critical for pelvic stability. Most studies evaluate vaginal viscoelasticity under a single uniaxial load; however, the vagina is subjected to dynamic multiaxial loading in the body. It is unknown how varied multiaxial loading conditions affect vaginal viscoelastic behavior and which microstructural processes dictate the viscoelastic response. Therefore, the objective was to develop methods using extension-inflation protocols to quantify vaginal viscoelastic creep under various circumferential and axial loads. Then, the protocol was applied to quantify vaginal creep and collagen microstructure in the fibulin-5 wildtype and haploinsufficient vaginas. To evaluate pressure-dependent creep, the fibulin-5 wildtype and haploinsufficient vaginas (n = 7/genotype) were subjected to various constant pressures at the physiologic length for 100 s. For axial length-dependent creep, the vaginas (n = 7/genotype) were extended to various fixed axial lengths then subjected to the mean in vivo pressure for 100 s. Second-harmonic generation imaging was performed to quantify collagen fiber organization and undulation (n = 3/genotype). Increased pressure significantly increased creep strain in the wildtype, but not the haploinsufficient vagina. The axial length did not significantly affect the creep rate or strain in both genotypes. Collagen undulation varied through the depth of the subepithelium but not between genotypes. These findings suggest that the creep response to loading may vary with biological processes and pathologies, therefore, evaluating vaginal creep under various circumferential loads may be important to understand vaginal function.
Collapse
Affiliation(s)
| | - Jeffrey A McGuire
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 330 A Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine & Reconstructive Surgery, University of Queensland Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Leise R Knoepp
- Department of Female Pelvic Medicine & Reconstructive Surgery, University of Queensland Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 330 A Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Ave., New Orleans, LA 70118
| |
Collapse
|
18
|
Jayyosi C, Lee N, Madhukaran SP, Nallasamy S, Mahendroo M, Myers K. The swelling behavior of the mouse cervix: Changing kinetics with osmolarity and the role of hyaluronan in pregnancy. Acta Biomater 2021; 135:414-424. [PMID: 34411755 DOI: 10.1016/j.actbio.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
The cervical remodeling process during pregnancy is characterized by progressive compositional and structural changes in the tissues extra-cellular matrix (ECM). Appropriately timed remodeling is critical for healthy gestation and prevention of premature cervical softening leading to preterm birth (PTB). Modification of the ECM glycosaminoglycans (GAGs) content with advancing pregnancy, especially the non-sulfated GAG hyaluronan (HA), is a fundamental change associated with cervical remodeling. While GAGs have numerous physiological roles, the mechanical consequence of evolving GAG content on cervical structure-function behavior remains an open question. Additionally, an understanding of cervical swelling properties, postulated to be regulated in part by GAGs, is required for the appropriate definition of a reference configuration for mechanical tests and to enhance biological understanding. To investigate cervical swelling, osmotic loading tests are conducted on isolated wild type mouse cervices throughout pregnancy. These tests are performed in various osmolarity solutions to assess the influence of the media on swelling kinetics. A genetically altered strain of mice with depletion of cervical HA is also tested to elucidate the contribution of HA to tissue swelling. Results show ex vivo cervical swelling is significant with volume changes ranging from 20 to 100% after 3h of free swelling. The swelling kinetics depend highly on osmolarity of the media and is altered with advancing pregnancy. The contribution of HA to swelling is only significant in hypo-osmotic solution when HA cervical content is high at the end of pregnancy. In summary, it is critical to account for swelling deformation mechanisms after excision in mechanical experiments. STATEMENT OF SIGNIFICANCE: The cervical extracellular matrix (ECM) undergoes drastic changes to fulfill the functional change of the cervix during pregnancy. Inappropriate timing for this transformation can result in preterm birth, a severe clinical challenge. One of the fundamental changes of the cervical ECM is the significant modification of the glycosaminoglycan content, especially hyaluronan (HA), which is thought to contribute significantly to the swelling and mechanical properties of the cervix. This study aims to measure the swelling kinetics of cervical tissue during pregnancy and to investigate the role of HA in these swelling tendencies. Results show the significant swelling of cervical tissue, which evolves as pregnancy progresses, highlighting a key material property feature of the remodeled cervix. Using a mouse strain with a cervical HA depletion, this work shows HA contributes to the swelling trends of late-term cervical tissue, in a hypo-osmotic solution.
Collapse
Affiliation(s)
- C Jayyosi
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - N Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - S P Madhukaran
- Department of Obstetrics and Gynecology and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - S Nallasamy
- Department of Obstetrics and Gynecology and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - M Mahendroo
- Department of Obstetrics and Gynecology and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - K Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
19
|
Roa C, Du Le VN, Mahendroo M, Saytashev I, Ramella-Roman JC. Auto-detection of cervical collagen and elastin in Mueller matrix polarimetry microscopic images using K-NN and semantic segmentation classification. BIOMEDICAL OPTICS EXPRESS 2021; 12:2236-2249. [PMID: 33996226 PMCID: PMC8086465 DOI: 10.1364/boe.420079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/25/2023]
Abstract
We propose an approach for discriminating fibrillar collagen fibers from elastic fibers in the mouse cervix in Mueller matrix microscopy using convolutional neural networks (CNN) and K-nearest neighbor (K-NN) for classification. Second harmonic generation (SHG), two-photon excitation fluorescence (TPEF), and Mueller matrix polarimetry images of the mice cervix were collected with a self-validating Mueller matrix micro-mesoscope (SAMMM) system. The components and decompositions of each Mueller matrix were arranged as individual channels of information, forming one 3-D voxel per cervical slice. The classification algorithms analyzed each voxel and determined the amount of collagen and elastin, pixel by pixel, on each slice. SHG and TPEF were used as ground truths. To assess the accuracy of the results, mean-square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used. Although the training and testing is limited to 11 and 5 cervical slices, respectively, MSE accuracy was above 85%, SNR was greater than 40 dB, and SSIM was larger than 90%.
Collapse
Affiliation(s)
- Camilo Roa
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- These authors contributed equally
| | - V N Du Le
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
- These authors contributed equally
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ilyas Saytashev
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8 Street, Miami, FL 33199, USA
| | - Jessica C Ramella-Roman
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8 Street, Miami, FL 33199, USA
| |
Collapse
|
20
|
Yan Y, Basij M, Garg A, Varrey A, Alhousseini A, Hsu R, Hernandez-Andrade E, Romero R, Hassan SS, Mehrmohammadi M. Spectroscopic photoacoustic imaging of cervical tissue composition in excised human samples. PLoS One 2021; 16:e0247385. [PMID: 33657136 PMCID: PMC7928441 DOI: 10.1371/journal.pone.0247385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023] Open
Abstract
Objective Cervical remodeling is an important component in determining the pathway of parturition; therefore, assessing changes in cervical tissue composition may provide information about the cervix’s status beyond the measurement of cervical length. Photoacoustic imaging is a non-invasive ultrasound-based technology that captures acoustic signals emitted by tissue components in response to laser pulses. This optical information allows for the determination of the collagen-to-water ratio (CWR). The purpose of this study was to compare the CWR evaluated by using spectroscopic photoacoustic (sPA) imaging in cervical samples obtained from pregnant and non-pregnant women. Methods This cross-sectional study comprised cervical biopsies obtained at the time of hysterectomy (n = 8) and at the scheduled cesarean delivery in pregnant women at term who were not in labor (n = 8). The cervical CWR was analyzed using a fiber-optic light-delivery system integrated to an ultrasound probe. The photoacoustic signals were acquired within the range of wavelengths that cover the peak absorption of collagen and water. Differences in the CWR between cervical samples from pregnant and non-pregnant women were analyzed. Hematoxylin and eosin and Sirius Red stains were used to compare the collagen content of cervical samples in these two groups. Results Eight cervix samples were obtained after hysterectomy, four from women ≤41 years of age and four from women ≥43 years of age; all cervical samples (n = 8) from pregnant women were obtained after 37 weeks of gestation at the time of cesarean section. The average CWR in cervical tissue samples from pregnant women was 18.7% (SD 7.5%), while in samples from non-pregnant women, it was 55.0% (SD 20.3%). There was a significantly higher CWR in the non-pregnant group compared to the pregnant group with a p-value <0.001. A subgroup analysis that compared the CWR in cervical samples from pregnant women and non-pregnant women ≤41 years of age (mean 46.3%, SD 23.1%) also showed a significantly higher CWR (p <0.01). Lower collagen content in the pregnancy group was confirmed by histological analysis, which revealed the loss of tissue composition, increased water content, and collagen degradation. Conclusion The proposed bimodal ultrasound and sPA imaging system can provide information on the biochemical composition of cervical tissue in pregnant and non-pregnant women. Photoacoustic imaging showed a higher collagen content in cervical samples from non-pregnant women as compared to those from pregnant women, which matched with the histological analysis. This novel imaging method envisions a new potential for a sensitive diagnostic tool in the evaluation of cervical tissue composition.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Alpana Garg
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Aneesha Varrey
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ali Alhousseini
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, William Beaumont Hospital, Royal Oak, Michigan, United States of America
| | - Richard Hsu
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Edgar Hernandez-Andrade
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas, Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Roberto Romero
- Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, United States of America
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Office of Women’s Health, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, United States of America
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Chatterjee A, Saghian R, Dorogin A, Cahill LS, Sled JG, Lye S, Shynlova O. Combination of histochemical analyses and micro-MRI reveals regional changes of the murine cervix in preparation for labor. Sci Rep 2021; 11:4903. [PMID: 33649420 PMCID: PMC7921561 DOI: 10.1038/s41598-021-84036-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
The cervix is responsible for maintaining pregnancy, and its timely remodeling is essential for the proper delivery of a baby. Cervical insufficiency, or "weakness", may lead to preterm birth, which causes infant morbidities and mortalities worldwide. We used a mouse model of pregnancy and term labor, to examine the cervical structure by histology (Masson Trichome and Picrosirius Red staining), immunohistochemistry (Hyaluronic Acid Binding Protein/HABP), and ex-vivo MRI (T2-weighted and diffusion tensor imaging), focusing on two regions of the cervix (i.e., endocervix and ectocervix). Our results show that mouse endocervix has a higher proportion of smooth muscle cells and collagen fibers per area, with more compact tissue structure, than the ectocervix. With advanced gestation, endocervical changes, indicative of impending delivery, are manifested in fewer smooth muscle cells, expansion of the extracellular space, and lower presence of collagen fibers. MRI detected three distinctive zones in pregnant mouse endocervix: (1) inner collagenous layer, (2) middle circular muscular layer, and (3) outer longitudinal muscular layer. Diffusion MRI images detected changes in tissue organization as gestation progressed suggesting the potential application of this technique to non-invasively monitor cervical changes that precede the onset of labor in women at risk for preterm delivery.
Collapse
Affiliation(s)
- Antara Chatterjee
- Physiology, University of Toronto, Toronto, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Rojan Saghian
- Medical Biophysics, University of Toronto, Toronto, Canada
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Anna Dorogin
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - John G Sled
- Medical Biophysics, University of Toronto, Toronto, Canada
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Stephen Lye
- Physiology, University of Toronto, Toronto, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Oksana Shynlova
- Physiology, University of Toronto, Toronto, Canada.
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.
- Obstetrics and Gynecology, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Torres A, Palmeri ML, Feltovich H, Hall TJ, Rosado-Mendez IM. Shear wave dispersion as a potential biomarker for cervical remodeling during pregnancy: evidence from a non-human primate model. FRONTIERS IN PHYSICS 2021; 8:606664. [PMID: 34178971 PMCID: PMC8225254 DOI: 10.3389/fphy.2020.606664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shear wave dispersion (variation of phase velocity with frequency) occurs in tissues with layered and anisotropic microstructure and viscous components, such as the uterine cervix. This phenomenon, mostly overlooked in previous applications of cervical Shear Wave Elasticity Imaging (SWEI) for preterm birth risk assessment, is expected to change drastically during pregnancy due to cervical remodeling. Here we demonstrate the potential of SWEI-based descriptors of dispersion as potential biomarkers for cervical remodeling during pregnancy. First, we performed a simulation-based pre-selection of two SWEI-based dispersion descriptors: the ratio R of group velocities computed with particle-velocity and particle-displacement, and the slope S of the phase velocity vs. frequency. The pre-selection consisted of comparing the contrast-to-noise ratio (CNR) of dispersion descriptors in materials with different degrees of dispersion with respect to a low-dispersive medium. Shear waves induced in these media by SWEI were simulated with a finite-element model of Zener viscoelastic solids. The pre-selection also considered two denoising strategies to improve CNR: a low-pass filter with automatic frequency cutoff determination, and singular value decomposition of shear wave displacements. After pre-selection, the descriptor-denoising combination that produced the largest CNR was applied to SWEI cervix data from 18 pregnant Rhesus macaques acquired at weeks 10 (mid-pregnancy stage) and 23 (late pregnancy stage) of the 24.5-week full pregnancy. A maximum likelihood linear mixed-effects model (LME) was used to evaluate the dependence of the dispersion descriptor on pregnancy stage, maternal age, parity and other experimental factors. The pre-selection study showed that descriptor S combined with singular value decomposition produced a CNR 11.6 times larger than the other descriptor and denoising strategy combinations. In the Non-Human Primates (NHP) study, the LME model showed that descriptor S significantly decreased from mid to late pregnancy (-0.37 ± 0.07 m/s-kHz per week, p <0.00001) with respect to the base value of 15.5 ± 1.9 m/s-kHz. This change was more significant than changes in other SWEI features such as the group velocity previously reported. Also, S varied significantly between the anterior and posterior portions of the cervix (p =0.02) and with maternal age (p =0.008). Given the potential of shear wave dispersion to track cervical remodeling, we will extend its application to ongoing longitudinal human studies.
Collapse
Affiliation(s)
- Abel Torres
- Departamento de Física Experimental, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, MEX
| | | | | | - Timothy J. Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Ivan M. Rosado-Mendez
- Departamento de Física Experimental, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, MEX
| |
Collapse
|
23
|
Li WJ, Lu JW, Zhang CY, Wang WS, Ying H, Myatt L, Sun K. PGE2 vs PGF2α in human parturition. Placenta 2020; 104:208-219. [PMID: 33429118 DOI: 10.1016/j.placenta.2020.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) and F2α (PGF2α) are the two most prominent prostanoids in parturition. They are involved in cervical ripening, membrane rupture, myometrial contraction and inflammation in gestational tissues. Because multiple receptor subtypes for PGE2 and PGF2α exist, coupled with diverse signaling pathways, the effects of PGE2 and PGF2α depend largely on the spatial and temporal expression of these receptors in intrauterine tissues. It appears that PGE2 and PGF2α play different roles in parturition. PGE2 is probably more important for labor onset, while PGF2α may play a more important role in labor accomplishment, which may be attributed to the differential effects of PGE2 and PGF2α in gestational tissues. PGE2 is more powerful than PGF2α in the induction of cervical ripening. In terms of myometrial contraction, PGE2 produces a biphasic effect with an initial contraction and a following relaxation, while PGF2α consistently stimulates myometrial contraction. In the fetal membranes, both PGE2 and PGF2α appear to be involved in the process of membrane rupture. In addition, PGE2 and PGF2α may also participate in the inflammatory process of intrauterine tissues at parturition by stimulating not only neutrophil influx and cytokine production but also cyclooxygenase-2 expression thereby intensifying their own production. This review summarizes the differential roles of PGE2 and PGF2α in parturition with respect to their production and expression of receptor subtypes in gestational tissues. Dissecting the specific mechanisms underlying the effects of PGE2 and PGF2α in parturition may assist in developing specific therapeutic targets for preterm and post-term birth.
Collapse
Affiliation(s)
- Wen-Jiao Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
24
|
Gökçe A, Şükür YE, Özmen B, Sönmezer M, Berker B, Aytaç R, Atabekoğlu CS. The association between operative hysteroscopy prior to assisted reproductive technology and cervical insufficiency in second trimester. Arch Gynecol Obstet 2020; 303:1347-1352. [PMID: 33219481 DOI: 10.1007/s00404-020-05863-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To assess the association between operative hysteroscopy prior to assisted reproductive technology (ART) cycle and cervical insufficiency (CI) in the second trimester of pregnancy. METHODS A retrospective cohort study was conducted. The charts of all women who got pregnant following an ART cycle between January 2015 and June 2018 were reviewed. The study group consisted of pregnant women who underwent operative hysteroscopy within 6 months before conception. The control group consisted of pregnant women who did not undergo hysteroscopy or any type of cervical surgical procedure before conception. The primary outcome measure was CI during the second trimester (13-27 weeks of gestation). RESULTS A total of 363 pregnancies achieved by ART cycles were assessed. After the exclusion of multiple pregnancies (n = 19), previous surgical procedures (n = 4) and first-trimester pregnancy losses (n = 80), there were 29 women in the study group and 231 women in the control group. The mean ages of the study and control groups were 31.2 ± 4.06 and 29.82 ± 4.71 years, respectively (P = 0.13). The indications for operative hysteroscopy were uterine septum (n = 19), T-shaped uterus (n = 4), endometrial polyp (n = 4), and submucosal fibroids (n = 2). The rates of CI in the study and control groups were 13.7% (4/29) and 3.4% (8/231), respectively (P = 0.012). The term delivery rates in the study and control groups were 79.3 and 91.8%, respectively (P = 0.044). CONCLUSIONS Operative hysteroscopy prior to ART cycles is significantly associated with CI between 13 and 27 weeks of gestation. Further investigation with larger cohorts is urgently needed to clarify this issue.
Collapse
Affiliation(s)
- Ali Gökçe
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey.
| | - Yavuz Emre Şükür
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Batuhan Özmen
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Murat Sönmezer
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Bülent Berker
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Ruşen Aytaç
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Cem Somer Atabekoğlu
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| |
Collapse
|
25
|
Kniss DA, Summerfield TL. Progesterone Receptor Signaling Selectively Modulates Cytokine-Induced Global Gene Expression in Human Cervical Stromal Cells. Front Genet 2020; 11:883. [PMID: 33061933 PMCID: PMC7517718 DOI: 10.3389/fgene.2020.00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/17/2020] [Indexed: 01/09/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of morbidity and mortality in infants <1 year of age. Intrauterine inflammation is a hallmark of preterm and term parturition; however, this alone cannot fully explain the pathobiology of PTB. For example, the cervix undergoes a prolonged series of biochemical and biomechanical events, including extracellular matrix (ECM) remodeling and mechanochemical changes, culminating in ripening. Vaginal progesterone (P4) prophylaxis demonstrates great promise in preventing PTB in women with a short cervix (<25 mm). We used a primary culture model of human cervical stromal fibroblasts to investigate gene expression signatures in cells treated with interleukin-1β (IL-1β) in the presence or absence of P4 following 17β-estradiol (17β-E2) priming for 7–10 days. Microarrays were used to measure global gene expression in cells treated with cytokine or P4 alone or in combination, followed by validation of select transcripts by semiquantitative polymerase chain reactions (qRT-PCR). Primary/precursor (MIR) and mature microRNAs (miR) were quantified by microarray and NanoString® platforms, respectively, and validated by qRT-PCR. Differential gene expression was computed after data normalization followed by pathway analysis using Kyoto Encyclopedia Genes and Genomes (KEGG), Panther, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) upstream regulator algorithm tools. Treatment of fibroblasts with IL-1β alone resulted in the differential expression of 1432 transcripts (protein coding and non-coding), while P4 alone led to the expression of only 43 transcripts compared to untreated controls. Cytokines, chemokines, and their cognate receptors and prostaglandin endoperoxide synthase-2 (PTGS-2) were among the most highly upregulated transcripts following either IL-1β or IL-1β + P4. Other prominent differentially expressed transcripts were those encoding ECM proteins, ECM-degrading enzymes, and enzymes involved in glycosaminoglycan (GAG) biosynthesis. We also detected differential expression of bradykinin receptor-1 and -2 transcripts, suggesting (prominent in tissue injury/remodeling) a role for the kallikrein–kinin system in cervical responses to cytokine and/or P4 challenge. Collectively, this global gene expression study provides a rich database to interrogate stromal fibroblasts in the setting of a proinflammatory and endocrine milieu that is relevant to cervical remodeling/ripening during preparation for parturition.
Collapse
Affiliation(s)
- Douglas A Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Taryn L Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
26
|
Ge W, Brooker G, Woo J, Rae W, Liu Y, Hyett J. Magnetorheological Gel Mimicking Cervical Ripening as a Potential Model for Evaluating Shear Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2472-2480. [PMID: 32616430 DOI: 10.1016/j.ultrasmedbio.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The mechanical characteristics of tissue can reflect its biochemical content and, therefore, be a powerful tool in the diagnosis of diseases. Many different methods have been developed for testing the mechanical properties of tissue, such as aspiration, indentation and shear wave elastography. Soft tissues are, however, more complex in behaviour than current commercial tissue-mimicking materials and the models used in measurement methods. Complex behaviours of the tissue include anisotropy and heterogeneous elasticity. The oversimplified models assumed in different measuring methods often neglect the effects of these behaviours, resulting in inaccuracies. The aim of this study was to develop a tissue-mimicking material able to capture the complexity of tissue mechanical behaviour. It will be used to improve mechanical property measuring methods by quantitatively determining how complexities in tissue behaviour affect the measurements made and evaluating the effectiveness of methods designed to overcome it, and will be used to train users for consistency in measurement. The tissue-mimicking material designed in this study focuses on the mechanical properties of the cervix as measured by shear wave elastography. The characteristic behaviours of cervical tissues highlighted are anisotropy, a wide range of elasticity that changes with gestational age and an elasticity gradient across the tissue. Magnetorheological gels were used as their elastic properties can be tuned with the application of magnetic fields. The sample was simulated with the finite-element software COMSOL before being tested by shear wave elastography and the INSTRON universal material testing machine. It had an elasticity range of 6.75-11.06 kPa, which is similar to that of cervical tissue. It was determined that a change in the orientation of the probe with respect to the orientation of anisotropy can cause up to a 30 % increase in measured elasticity. There was a 16% decrease in elasticity across the sample.
Collapse
Affiliation(s)
- Weirong Ge
- Discipline of Obstetrics, Gynaecology and Neonatology, Central Clinical School, University of Sydney, Sydney, Australia.
| | | | - Joyce Woo
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Will Rae
- Discipline of Medical Imaging Sciences, University of Sydney, Sydney, Australia
| | - Yu Liu
- Australian Centre for Field Robotics, Sydney, Australia
| | - Jon Hyett
- Discipline of Obstetrics, Gynaecology and Neonatology, Central Clinical School, University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Callejas A, Melchor J, Faris IH, Rus G. Hyperelastic Ex Vivo Cervical Tissue Mechanical Characterization. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4362. [PMID: 32764345 PMCID: PMC7472274 DOI: 10.3390/s20164362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
This paper presents the results of the comparison between a proposed Fourth Order Elastic Constants (FOECs) nonlinear model defined in the sense of Landau's theory, and the two most contrasted hyperelastic models in the literature, Mooney-Rivlin, and Ogden models. A mechanical testing protocol is developed to investigate the large-strain response of ex vivo cervical tissue samples in uniaxial tension in its two principal anatomical locations, the epithelial and connective layers. The final aim of this work is to compare the reconstructed shear modulus of the epithelial and connective layers of cervical tissue. According to the obtained results, the nonlinear parameter A from the proposed FOEC model could be an important biomarker in cervical tissue diagnosis. In addition, the calculated shear modulus depended on the anatomical location of the cervical tissue (μepithelial = 1.29 ± 0.15 MPa, and μconnective = 3.60 ± 0.63 MPa).
Collapse
Affiliation(s)
- Antonio Callejas
- Department of Structural Mechanics, University of Granada, 18010 Granada, Spain; (I.H.F.); (G.R.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Juan Melchor
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit, “Modelling Nature” (MNat), University of Granada, 18010 Granada, Spain
- Department of Statistics and Operations Research, University of Granada, 18010 Granada, Spain
| | - Inas H. Faris
- Department of Structural Mechanics, University of Granada, 18010 Granada, Spain; (I.H.F.); (G.R.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Guillermo Rus
- Department of Structural Mechanics, University of Granada, 18010 Granada, Spain; (I.H.F.); (G.R.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit, “Modelling Nature” (MNat), University of Granada, 18010 Granada, Spain
| |
Collapse
|
28
|
Gou K, Topol H, Demirkoparan H, Pence TJ. Stress-Swelling Finite Element Modeling of Cervical Response With Homeostatic Collagen Fiber Distributions. J Biomech Eng 2020; 142:081002. [PMID: 31891375 DOI: 10.1115/1.4045810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 01/01/2023]
Abstract
During pregnancy, the cervix experiences significant mechanical property change due to tissue swelling, and to ongoing changes in the collagen content. In this paper, we model how these two effects contribute to cervical deformation as the pressure load on top of the cervix increases. The cervix and its surrounding supporting ligaments are taken into consideration in the resulting mechanical analysis. The cervix itself is treated as a multilayered tube-like structure, with layer-specific collagen orientation. The cervical tissue in each layer is treated in terms of a collagen constituent that remodels with time within a ground substance matrix that experiences swelling. The load and swelling are taken to change sufficiently slowly so that the collagen properties at any instant can be regarded as being in a state of homeostasis. Among other things, the simulations show how the luminal cross-sectional area varies along its length as a function of pressure and swelling. In general, an increase in pressure causes an overall shortening of the lumen while an increase in swelling has the opposite effect.
Collapse
Affiliation(s)
- Kun Gou
- Department of Science and Mathematics, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Heiko Topol
- Carnegie Mellon University in Qatar, Education City, P.O. Box 24866, Doha, Qatar
| | - Hasan Demirkoparan
- Carnegie Mellon University in Qatar, Education City, P.O. Box 24866, Doha, Qatar
| | - Thomas J Pence
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
29
|
Diawtipsukon S, Bumrungphuet S, Dulyaphat W, Panburana P. <p>The Comparative Study of Cervical Shear Wave Elastography Between Twin and Singleton Pregnancy</p>. Int J Womens Health 2020; 12:649-656. [PMID: 32922090 PMCID: PMC7457743 DOI: 10.2147/ijwh.s251522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To compare the cervical shear wave elastography (SWE) by using transvaginal ultrasound (TVS) between twin and singleton pregnant women. Materials and Methods This was a prospective cohort study involving the twin and singleton pregnant women who attended the antenatal care at Ramathibodi Hospital, Bangkok, Thailand. The participants who met the inclusion criteria were serially measured the shear wave speed (SWS) by using TVS at early, mid-, and third trimester. The changes in SWS with advancing gestational age between twin and singleton pregnancies were evaluated. The gestational age at delivery and spontaneous preterm delivery rate were also analyzed. Results A total of 36 twin pregnancies and 38 singleton pregnancies were analyzed. No significant difference in baseline characteristics, except the age of participants (twin pregnancies 33.1±4.6 years, singleton pregnancies 29.9±5.4 years, p-value = 0.006) was observed. The cervical SWS decreased with advancing gestational age in both twin and singleton pregnancy, but there was a statistically significant difference of cervical SWS at the lower point in mid-trimester (twin pregnancies 2.27±0.4, singleton pregnancies 2.71±0.6 m/s, p-value = 0.001). However, no significant difference in cervical SWS at the upper point and the lower point in the early and third trimester was demonstrated. Even though the gestational age at delivery between both groups revealed a significant difference (twin pregnancies 35.9±2.8, singleton pregnancies 37.6±2.9 wk., p-value = 0.008) but the spontaneous preterm delivery rate did not differ significantly (twin pregnancies 22.2%, singleton pregnancies 15.8%, p-value = 0.483). Conclusion The mid-trimester cervical SWS measurement at the lower point detects the difference in cervical softness between twin pregnancies and singleton pregnancies. The cervical SWS might be an additional option for monitoring the change in cervical softness in twin pregnancies.
Collapse
Affiliation(s)
- Sanpon Diawtipsukon
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sommart Bumrungphuet
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Correspondence: Sommart Bumrungphuet Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok10400, ThailandTel +66 2 201 1412 Email
| | - Wirada Dulyaphat
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panyu Panburana
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Chen CY, Chen CP, Sun FJ. Assessment of the cervix in pregnant women with a history of cervical insufficiency during the first trimester using elastography. Acta Obstet Gynecol Scand 2020; 99:1497-1503. [PMID: 32564364 DOI: 10.1111/aogs.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION To investigate changes in first trimester cervical elastography, cervical length and endocervical canal width in pregnant women with a history of cervical insufficiency, and further discuss the possibility of using these markers as predictors of cervical insufficiency in early pregnancy. MATERIAL AND METHODS This was an observational ultrasound study of first trimester cervical changes in singleton pregnancies between January 2016 and June 2018. Cervical elastography, cervical length and endocervical canal width were measured during the first trimester. Strain elastography was used to estimate the softness of anterior and posterior cervical lips and was expressed as percentages (strain rate). RESULTS Of the 339 pregnant women enrolled, 24 had a history of cervical insufficiency. The anterior cervical lip was significantly softer in the cervical insufficiency group (strain rate: 0.19% ± 0.05% vs 0.11% ± 0.04%; P < .001). Cervical length was significantly shorter in the cervical insufficiency group (36.3 ± 4.8 mm vs 38.3 ± 3.8 mm; P = .014). Endocervical canal width was significantly wider in the cervical insufficiency group (5.7 ± 1.1 mm vs 5.2 ± 0.7 mm; P = .001). Receiver operating characteristic curve analyses revealed that the optimal cut-off values of anterior cervical lip, cervical length and endocervical canal width to confirm the diagnosis of cervical insufficiency were 0.15%, 35.5 mm and 5.75 mm, respectively. In multivariate logistic regression analysis, significant differences were still observed in anterior cervical strain rate (adjusted odds ratio [OR] 53.78, 95% [confidence interval [CI] 11-270; P < .001) and endocervical canal width (adjusted OR, 5.41, 95% CI,1.2-24.7; P = .029). CONCLUSIONS First trimester cervical elastography is a valuable tool in the assessment of women with a history of cervical insufficiency. The anterior cervical lip was significantly softer in women with a history of cervical insufficiency, and the sensitivity and specificity of anterior cervical lip strain were better than that of cervical length and endocervical canal width.
Collapse
Affiliation(s)
- Chen-Yu Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Fang-Ju Sun
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Evolving cervical imaging technologies to predict preterm birth. Semin Immunopathol 2020; 42:385-396. [PMID: 32524180 DOI: 10.1007/s00281-020-00800-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Preterm birth, defined as delivery at less than 37 weeks' gestation, increases maternal-fetal morbidity and mortality and places heavy financial and emotional burdens on families and society. Although premature cervical remodeling is a major factor in many preterm deliveries, how and why this occurs is poorly understood. This review describes existing and emerging imaging techniques and their advantages and disadvantages in assessing cervical remodeling. Brightness mode (B-mode) ultrasound is used to measure the cervical length, currently the gold standard for determining risk of preterm birth. Several new B-mode ultrasound techniques are being developed, including measuring attenuation, cervical gland area, and the cervical consistency index. Shear wave speed can differentiate between soft (ripe) and firm (unripe) cervices by measuring the speed of ultrasound through a tissue. Elastography provides qualitative information regarding cervical stiffness by compressing the tissue with the ultrasound probe. Raman spectroscopy uses a fiber optic probe to assess the biochemical composition of the cervix throughout pregnancy. Second harmonic generation microscopy uses light to quantify changes in collagen fiber structure and size during cervical maturation. Finally, photoacoustic endoscopy records light-induced sound to determine optical characteristics of cervical tissue. In the long term, a combination of several imaging approaches, combined with consideration of clinical epidemiologic characteristics, will likely be required to accurately predict preterm birth.
Collapse
|
32
|
Yellon SM, Greaves E, Heuerman AC, Dobyns AE, Norman JE. Effects of macrophage depletion on characteristics of cervix remodeling and pregnancy in CD11b-dtr mice. Biol Reprod 2020; 100:1386-1394. [PMID: 30629144 DOI: 10.1093/biolre/ioz002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
To test the hypothesis that macrophages are essential for remodeling the cervix in preparation for birth, pregnant homozygous CD11b-dtr mice were injected with diphtheria toxin (DT) on days 14 and 16 postbreeding. On day 15 postbreeding, macrophages (F4/80+) were depleted in cervix and kidney, but not in liver, ovary, or other non-reproductive tissues in DT-compared to saline-treated dtr mice or wild-type controls given DT or saline. Within 24 h of DT-treatment, the density of cell nuclei and macrophages declined in cervix stroma in dtr mice versus controls, but birefringence of collagen, as an indication of extracellular cross-linked structure, remained unchanged. Only in the cervix of DT-treated dtr mice was an apoptotic morphology evident in macrophages. DT-treatment did not alter the sparse presence or morphology of neutrophils. By day 18 postbreeding, macrophages repopulated the cervix in DT-treated dtr mice so that the numbers were comparable to that in controls. However, at term, evidence of fetal mortality without cervix ripening occurred in most dtr mice given DT-a possible consequence of treatment effects on placental function. These findings suggest that CD11b+ F4/80+ macrophages are important to sustain pregnancy and are required for processes that remodel the cervix in preparation for parturition.
Collapse
Affiliation(s)
- S M Yellon
- Longo Center for Perinatal Biology.,Division of Physiology, Departments of Basic Sciences, and Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - E Greaves
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland EH16 4TJ, United Kingdom
| | | | | | - J E Norman
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland EH16 4TJ, United Kingdom
| |
Collapse
|
33
|
Du L, Zhang LH, Zheng Q, Xie HN, Gu YJ, Lin MF, Wu LH. Evaluation of Cervical Elastography for Prediction of Spontaneous Preterm Birth in Low-Risk Women: A Prospective Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:705-713. [PMID: 31626344 DOI: 10.1002/jum.15149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The aim of this study was to determine whether cervical elastographic parameters in addition to cervical length (CL) during the 3 trimesters of pregnancy would be predictive of spontaneous preterm birth (sPTB) among low-risk women. METHODS This work was a prospective nested case-control study evaluating cervical elastographic parameters and CL in low-risk women during the 3 trimesters of pregnancy. A binary logistic regression analysis was used to calculate significant covariates for prediction of sPTB. The area under the curve of the prediction model was calculated by using a receiver operating characteristic curve. RESULTS There were 286 women (26 cases and 260 controls) included in the analysis. The parameters of cervical elasticity became softened and heterogeneous during the 3 trimesters of pregnancy in both women with and without sPTB. The differences in the mean strain value at the internal os of the cervix (IOS), ratio (strain ratio of the internal os to the external os) during the second trimester and the IOS during the third trimester between the groups had statistical significance (P < .01; P = .01; P < .01, respectively). The CL had no association with sPTB during the 3 trimesters. The IOS during the second trimester was a better predictor of sPTB, with an area under the curve of 0.730, and sensitivity was 72.73%. CONCLUSIONS We observed multiple elastographic parameters and demonstrated the physiologic changes in the cervix during the 3 trimesters of pregnancy. Furthermore, we found that the IOS during the second trimester can be helpful in predicting sPTB. However, the CL had no association with sPTB during the 3 trimesters of pregnancy.
Collapse
Affiliation(s)
- Liu Du
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-He Zhang
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiao Zheng
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Jun Gu
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei-Fang Lin
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Hong Wu
- Department of Ultrasonic Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Abstract
The cervix is the essential gatekeeper for birth. Incomplete cervix remodeling contributes to problems with delivery at or post-term while preterm birth is a major factor in perinatal morbidity and mortality in newborns. Lack of cervix biopsies from women during the period preceding term or preterm birth have led to use of rodent models to advanced understanding of the mechanism for prepartum cervix remodeling. The critical transition from a soft cervix to a compliant prepartum lower uterine segment has only recently been recognized to occur in various mammalian species when progesterone in circulation is at or near the peak of pregnancy in preparation for birth. In rodents, characterization of ripening resembles an inflammatory process with a temporal coincidence of decreased density of cell nuclei, decline in cross-linked extracellular collagen, and increased presence of macrophages in the cervix. Although a role for inflammation in parturition and cervix remodeling is not a new concept, a comprehensive examination of literature in this review reveals that many conclusions are drawn from comparisons before and after ripening has occurred, not during the process. The present review focuses on essential phenotypes and functions of resident myeloid and possibly other immune cells to bridge the gap with evidence that specific biomarkers may assess the progress of ripening both at term and with preterm birth. Moreover, use of endpoints to determine the effectiveness of various therapeutic approaches to forestall remodeling and reduce risks for preterm birth, or facilitate ripening to promote parturition will improve the postpartum well-being of mothers and newborns.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Basic Sciences, Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
35
|
Du L, Lin MF, Wu LH, Zhang LH, Zheng Q, Gu YJ, Xie HN. Quantitative elastography of cervical stiffness during the three trimesters of pregnancy with a semiautomatic measurement program: A longitudinal prospective pilot study. J Obstet Gynaecol Res 2019; 46:237-248. [PMID: 31814257 DOI: 10.1111/jog.14170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
AIM To assess the reproducibility of a semiautomatic quantification tool for cervical stiffness and evaluate the normal changes in cervical elasticity during the three trimesters of pregnancy. METHODS This longitudinal prospective pilot study evaluated cervical elasticity during the three trimesters of pregnancy (11-14, 20-24 and 28-32 weeks) in women with singleton pregnancies. Women with a history of conization, cerclage, cervical Naboth cysts (diameter > 10 mm), cervical tumors, or uterine malformation were excluded. A semiautomatic tool was used to evaluate the stiffness of the whole cervix and the internal and external cervical os with multiple quantitative elasticity parameters and the cervical length (CL) on the sagittal view via transvaginal elastography. Intraclass correlation coefficients (ICC) and Bland-Altman analysis were used to assess intra- and interobserver variability. E-Cervix parameters during the three trimesters were compared using the Friedman test. RESULTS In total, 217 women with 651 strain examinations during the three trimesters were included. The intra- and interobserver ICC for the E-Cervix parameters ranged from 0.947 to 0.991 and 0.855 to 0.989, respectively. There were significant differences in all parameters among the three trimesters. Cervical elasticity showed significant softening and became heterogeneous during the three trimesters. The median CL was significantly shorter in the first trimester than in the second and third trimesters (P = 0.004, P < 0.001). CONCLUSION E-Cervix provides a graphical tool for operators to easily define regions of interest and obtain multiple repeatable measures of elasticity. The normal references for E-Cervix parameters during the three trimesters reflect the physiological cervical changes during pregnancy.
Collapse
Affiliation(s)
- Liu Du
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mei-Fang Lin
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Wu
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-He Zhang
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiao Zheng
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu-Jun Gu
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Yoshida K, Jayyosi C, Lee N, Mahendroo M, Myers KM. Mechanics of cervical remodelling: insights from rodent models of pregnancy. Interface Focus 2019; 9:20190026. [PMID: 31485313 PMCID: PMC6710664 DOI: 10.1098/rsfs.2019.0026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
The uterine cervix undergoes a complex remodelling process during pregnancy, characterized by dramatic changes in both extracellular matrix (ECM) structure and mechanical properties. Understanding the cervical remodelling process in a term or preterm birth will aid efforts for the prevention of preterm births (PTBs), which currently affect 14.8 million babies annually worldwide. Animal models of pregnancy, particularly rodents, continue to provide valuable insights into the cervical remodelling process, through the study of changes in ECM structure and mechanical properties at defined gestation time points. Currently, there is a lack of a collective, quantitative framework to relate the complex, nonlinear mechanical behaviour of the rodent cervix to changes in ECM structure. This review aims to fill this gap in knowledge by outlining the current understanding of cervical remodelling during pregnancy in rodent models in the context of solid biomechanics. Here we highlight the collective contribution of multiple mechanical studies which give evidence that cervical softening coincides with known ECM changes throughout pregnancy. Taken together, mechanical tests on tissue from pregnant rodents reveal the cervix's remarkable ability to soften dramatically during gestation to allow for a compliant tissue that can withstand damage and can dissipate mechanical loads.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Charles Jayyosi
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristin M. Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Carlson LC, Hall TJ, Rosado-Mendez IM, Mao L, Feltovich H. Quantitative assessment of cervical softening during pregnancy with shear wave elasticity imaging: an in vivo longitudinal study. Interface Focus 2019; 9:20190030. [PMID: 31485315 PMCID: PMC6710662 DOI: 10.1098/rsfs.2019.0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
We report here the results of a longitudinal study of cervix stiffness during pregnancy. Thirty women, ages ranging from 19 to 37 years, were scanned with ultrasound at five time points beginning at their normal first-trimester screening (8-13 weeks) through term pregnancy (nominally 40 week) using a clinical ultrasound imaging system modified with a special ultrasound transducer and system software. The system estimated the shear wave speed (its square proportional to the shear modulus under idealized conditions) in the cervix. We found a constant fractional reduction (about 4% per week) in shear wave speed with increasing gestational age. We also demonstrated a spatial gradient in shear wave speed along the length of the cervix (softest at the distal end). Results were consistent with our previous ex vivo and in vivo work in women. Shear wave elasticity imaging may be a potentially useful clinical tool for objective assessment of cervical softening in pregnancy.
Collapse
Affiliation(s)
- Lindsey C. Carlson
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Maternal Fetal Medicine, Intermountain Healthcare, Provo, UT, USA
| | - Timothy J. Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Ivan M. Rosado-Mendez
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Institute of Physics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Helen Feltovich
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Maternal Fetal Medicine, Intermountain Healthcare, Provo, UT, USA
| |
Collapse
|
38
|
Yan Y, Gomez-Lopez N, Basij M, Shahvari AV, Vadillo-Ortega F, Hernandez-Andrade E, Hassan SS, Romero R, MehrMohammadi M. Photoacoustic imaging of the uterine cervix to assess collagen and water content changes in murine pregnancy. BIOMEDICAL OPTICS EXPRESS 2019; 10:4643-4655. [PMID: 31565515 PMCID: PMC6757472 DOI: 10.1364/boe.10.004643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 05/11/2023]
Abstract
The uterine cervix plays a central role in the maintenance of pregnancy and in the process of parturition. Cervical remodeling involves dramatic changes in extracellular matrix composition and, in particular, of collagen and water content during cervical ripening (a term that describes the anatomical, biochemical, and physiologic changes in preparation for labor). Untimely cervical ripening in early gestation predisposes to preterm labor and delivery, the leading cause of infant death worldwide. Inadequate ripening of the cervix is associated with failure of induction or prolonged labor. The current approach to evaluate the state of the cervix relies on digital examination and sonographic examination. Herein, we present a novel imaging method that combines ultrasound (US) and photoacoustic (PA) techniques to evaluate cervical remodeling by assessing the relative collagen and water content of this organ. The method was tested in vitro in extracted collagen phantoms and ex vivo in murine cervical tissues that were collected in mid-pregnancy and at term. We report, for the first time, that our imaging approach provides information about the molecular changes in the cervix at different gestational ages. There was a strong correlation between the results of PA imaging and the histological assessment of the uterine cervix over the course of gestation. These findings suggest that PA imaging is a powerful method to assess the biochemical composition of the cervix and open avenues to non-invasively investigate the composition of this organ, which is essential for reproductive success.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Immunology, and, Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | | | - Felipe Vadillo-Ortega
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Unidad de Vinculación de la Facultad de Medicina,UNAM y Dirección de Investigación, Instituto Nacional de Medicina Genómica, CDMX, Mexico
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Mohammad MehrMohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
39
|
Suthasmalee S, Moungmaithong S. Cervical shear wave elastography as a predictor of preterm delivery during 18–24 weeks of pregnancy. J Obstet Gynaecol Res 2019; 45:2158-2168. [DOI: 10.1111/jog.14094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
|
40
|
Li W, Narice BF, Anumba DO, Matcher SJ. Polarization-sensitive optical coherence tomography with a conical beam scan for the investigation of birefringence and collagen alignment in the human cervix. BIOMEDICAL OPTICS EXPRESS 2019; 10:4190-4206. [PMID: 31453004 PMCID: PMC6701558 DOI: 10.1364/boe.10.004190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 05/19/2023]
Abstract
By measuring the phase retardance of a cervical extracellular matrix, our in-house polarization-sensitive optical coherence tomography (PS-OCT) was shown to be capable of (1) mapping the distribution of collagen fibers in the non-gravid cervix, (2) accurately determining birefringence, and (3) measuring the distinctive depolarization of the cervical tissue. A conical beam scan strategy was also employed to explore the 3D orientation of the collagen fibers in the cervix by interrogating the samples with an incident light at 45° and successive azimuthal rotations of 0-360°. Our results confirmed previous observations by X-ray diffraction, suggesting that in the non-gravid human cervix collagen fibers adjacent to the endocervical canal and in the outermost areas tend to arrange in a longitudinal fashion whereas in the middle area they are oriented circumferentially. PS-OCT can assess the microstructure of the human cervical collagen in vitro and holds the potential to help us better understand cervical remodeling prior to birth pending the development of an in vivo probe.
Collapse
Affiliation(s)
- Wei Li
- Biophotonics Group, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S3 7HQ, UK
- Co-first authors with equal contribution
| | - Brenda F. Narice
- Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2SF, UK
- Co-first authors with equal contribution
| | - Dilly O. Anumba
- Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2SF, UK
| | - Stephen J. Matcher
- Biophotonics Group, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S3 7HQ, UK
| |
Collapse
|
41
|
Raia NR, Bakaysa SL, Ghezzi CE, House MD, Kaplan DL. Ex vivo pregnant-like tissue model to assess injectable hydrogel for preterm birth prevention. J Biomed Mater Res B Appl Biomater 2019; 108:468-474. [PMID: 31070848 DOI: 10.1002/jbm.b.34403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Cervical insufficiency (CI) is an important cause of preterm birth, which leads to severe newborn complications. Standard treatment for CI is cerclage, which has variable success rates, resulting in a clinical need for alternative treatments. Our objective was to develop an ex vivo model of softened cervical tissue to study an injectable silk-based hydrogel as a novel alternative treatment for CI. Cervical tissue from nonpregnant women was enzymatically treated and characterized to determine tissue hydration, collagen organization, and mechanical properties via unconfined compression. Enzymatic treatment led to an 86 ± 7.9% decrease in modulus, which correlated to a decrease in collagen organization as observed by differences in collagen birefringence. The softened tissue was injected with a crosslinked silk-hyaluronic acid composite hydrogel. After injection, the mechanical properties and volume increase of the hydrogel-treated tissue were measured resulting in a 54 ± 16% volume increase with minimal effect on tissue mechanical properties. In addition, cervical fibroblasts on silk-hyaluronic acid hydrogels remained viable and exhibited increased proliferation and metabolic activity over 5 days. Overall, this study developed an ex vivo pregnant-like human tissue model to assess cervical augmentation and showed the potential of silk-based hydrogels as an alternative treatment for cervical insufficiency.
Collapse
Affiliation(s)
- Nicole R Raia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Stephanie L Bakaysa
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael D House
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Tufts Medical Center, Boston, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
42
|
Qu Y, Hu P, Shi J, Maslov K, Zhao P, Li C, Ma J, Garcia-Uribe A, Meyers K, Diveley E, Pizzella S, Muench L, Punyamurthy N, Goldstein N, Onwumere O, Alisio M, Meyenburg K, Maynard J, Helm K, Altieri E, Slaughter J, Barber S, Burger T, Kramer C, Chubiz J, Anderson M, McCarthy R, England SK, Macones GA, Stout MJ, Tuuli M, Wang LV. In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-6. [PMID: 30520275 PMCID: PMC6318810 DOI: 10.1117/1.jbo.23.12.121621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Premature cervical remodeling is a critical precursor of spontaneous preterm birth, and the remodeling process is characterized by an increase in tissue hydration. Nevertheless, current clinical measurements of cervical remodeling are subjective and detect only late events, such as cervical effacement and dilation. Here, we present a photoacoustic endoscope that can quantify tissue hydration by measuring near-infrared cervical spectra. We quantify the water contents of tissue-mimicking hydrogel phantoms as an analog of cervical connective tissue. Applying this method to pregnant women in vivo, we observed an increase in the water content of the cervix throughout pregnancy. The application of this technique in maternal healthcare may advance our understanding of cervical remodeling and provide a sensitive method for predicting preterm birth.
Collapse
Affiliation(s)
- Yuan Qu
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Peng Hu
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, Pasadena, California, United States
| | - Konstantin Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, Pasadena, California, United States
| | - Peinan Zhao
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Chiye Li
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Jun Ma
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Alejandro Garcia-Uribe
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Karen Meyers
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Emily Diveley
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Stephanie Pizzella
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Lisa Muench
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Nina Punyamurthy
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Naomi Goldstein
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Oji Onwumere
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Mariana Alisio
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Kaytelyn Meyenburg
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Jennifer Maynard
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Kristi Helm
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Emma Altieri
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Janessia Slaughter
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Sabrina Barber
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Tracy Burger
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Christine Kramer
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Jessica Chubiz
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Monica Anderson
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Ronald McCarthy
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Sarah K. England
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - George A. Macones
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Molly J. Stout
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Methodius Tuuli
- Washington University in St. Louis, March of Dimes Prematurity Research Center, Department of Obstetrics and Gynecology, St. Louis, Missouri, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
43
|
Sung SJ, Lee SM, Oh S, Choi JH, Park JY, Kim BJ, Lee JH, Park CW, Park JS, Jun JK. Mid-pregnancy cervical length as a risk factor for cesarean section in women with twin pregnancies. J Perinat Med 2018; 46:780-785. [PMID: 29461973 DOI: 10.1515/jpm-2017-0302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/18/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Objective:
It is well known that a short cervix at mid-pregnancy is a risk factor for spontaneous preterm birth in both singleton and twin gestations. Recent evidence also suggests that a long cervix at mid-pregnancy is a predictor of the risk of cesarean section (C/S) in singleton gestation. The purpose of this study was to determine whether a long cervix at mid-pregnancy was associated with an increased risk of C/S in women with twin pregnancies.
Methods:
We enrolled 746 women pregnant with twins whose cervical length was measured by trans-vaginal ultrasonography at a mean of 22 weeks of gestation and who delivered in our institution. Cases with a short cervix [cervical length (CL) <15 mm] were excluded. Cases were divided into four groups according to the quartile of CL.
Results:
The rate of C/S increased according to the quartile of CL (47% in the 1st quartile, 51% in the 2nd quartile, 56% in the 3rd quartile and 62% in the 4th quartile, P<0.005, χ2 for trend). CL was an independent risk factor for C/S even after adjustment for confounding variables. When confining analysis to women who delivered after a trial of labor (n=418), to nulliparous women (n=633) or to those who delivered at late preterm or full term (n=666), the rate of C/S also increased according to the quartile of CL, and the relationship between CL and the risk of C/S remained significant after adjustment in each group.
Conclusion:
In women pregnant with twins, long CL at mid-pregnancy was a risk factor for C/S.
Collapse
Affiliation(s)
- Su Jin Sung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Joo Hee Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Byoung Jae Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Joon Ho Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Jayyosi C, Lee N, Willcockson A, Nallasamy S, Mahendroo M, Myers K. The mechanical response of the mouse cervix to tensile cyclic loading in term and preterm pregnancy. Acta Biomater 2018; 78:308-319. [PMID: 30059802 PMCID: PMC6336396 DOI: 10.1016/j.actbio.2018.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 02/03/2023]
Abstract
A well-timed modification of both the collagen and elastic fiber network in the cervix during pregnancy accompanies the evolution of tissue mechanical parameters that are key to a successful pregnancy. Understanding of the cervical mechanical behaviour along normal and abnormal pregnancy is crucial to define the molecular events that regulate remodeling in term and preterm birth (PTB). In this study, we measured the mechanical response of mouse cervical tissue to a history of cyclic loading and quantified the tissue's ability to recover from small and large deformations. Assessments were made in nonpregnant, pregnant (gestation days 6, 12, 15 and 18) and mouse models of infection mediated PTB treated with lipopolysaccharide on gestation d15 (LPS treated) and hormone withdrawal mediated PTB on gestation d15 (RU486 treated). The current study uncovers the contributions of collagen and elastic fiber networks to the progressive change in mechanical function of the cervix through pregnancy. Premature cervical remodeling induced on gestation day 15 in the LPS infection model is characterized by distinct mechanical properties that are similar but not identical to mechanical properties at term ripening on day 18. Remodeling in the LPS infection model results in a weaker cervix, unable to withstand high loads. In contrast, the RU486 preterm model resembles the cyclic mechanical behaviour seen for term d18 cervix, where the extremely compliant tissue is able to withstand multiple cycles under large deformations without breaking. The distinct material responses to load-unload cycles in the two PTB models matches the differing microstructural changes in collagen and elastic fibers in these two models of preterm birth. Improved understanding of the impact of microstructural changes to mechanical performance of the cervix will provide insights to aid in the development of therapies for prevention of preterm birth. STATEMENT OF SIGNIFICANCE Preterm Birth (PTB) still represents a serious challenge to be overcome, considering its implications on infant mortality and lifelong health consequences. While the causes and etiologies of PTB are diverse and yet to be fully elucidated, a common pathway leading to a preterm delivery is premature cervical remodeling. Throughout pregnancy, the cervix remodels through changes of its microstructure, thus altering its mechanical properties. An appropriate timing for these transformations is critical for a healthy pregnancy and avoidance of PTB. Hence, this study aims at understanding how the mechanical function of the cervix evolves during a normal and preterm pregnancy. By performing cyclic mechanical testing on cervix samples from animal models, we assess the cervix's ability to recover from moderate and severe loading. The developed methodology links mechanical parameters to specific microstructural components. This work identifies a distinct biomechanical signature associated with inflammation mediated PTB that differs from PTB induced by hormone withdrawal and from normal term remodeling.
Collapse
Affiliation(s)
- C Jayyosi
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - N Lee
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - A Willcockson
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - S Nallasamy
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Mahendroo
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Myers
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
45
|
Hernandez-Andrade E, Maymon E, Luewan S, Bhatti G, Mehrmohammadi M, Erez O, Pacora P, Done B, Hassan SS, Romero R. A soft cervix, categorized by shear-wave elastography, in women with short or with normal cervical length at 18-24 weeks is associated with a higher prevalence of spontaneous preterm delivery. J Perinat Med 2018; 46:489-501. [PMID: 29813033 PMCID: PMC6105276 DOI: 10.1515/jpm-2018-0062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine whether a soft cervix identified by shear-wave elastography between 18 and 24 weeks of gestation is associated with increased frequency of spontaneous preterm delivery (sPTD). MATERIALS AND METHODS This prospective cohort study included 628 consecutive women with a singleton pregnancy. Cervical length (mm) and softness [shear-wave speed: (SWS) meters per second (m/s)] of the internal cervical os were measured at 18-24 weeks of gestation. Frequency of sPTD <37 (sPTD<37) and <34 (sPTD<34) weeks of gestation was compared among women with and without a short (≤25 mm) and/or a soft cervix (SWS <25th percentile). RESULTS There were 31/628 (4.9%) sPTD<37 and 12/628 (1.9%) sPTD<34 deliveries. The combination of a soft and a short cervix increased the risk of sPTD<37 by 18-fold [relative risk (RR) 18.0 (95% confidence interval [CI], 7.7-43.9); P<0.0001] and the risk of sPTD<34 by 120-fold [RR 120.0 (95% CI 12.3-1009.9); P<0.0001] compared to women with normal cervical length. A soft-only cervix increased the risk of sPTD<37 by 4.5-fold [RR 4.5 (95% CI 2.1-9.8); P=0.0002] and of sPTD<34 by 21-fold [RR 21.0 (95% CI 2.6-169.3); P=0.0003] compared to a non-soft cervix. CONCLUSIONS A soft cervix at 18-24 weeks of gestation increases the risk of sPTD <37 and <34 weeks of gestation independently of cervical length.
Collapse
Affiliation(s)
- Edgar Hernandez-Andrade
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Suchaya Luewan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Maternal-Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
| | | | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine,, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Service, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
46
|
O’Brien CM, Vargis E, Rudin A, Slaughter JC, Thomas G, Newton JM, Reese J, Bennett KA, Mahadevan-Jansen A. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy. Am J Obstet Gynecol 2018; 218:528.e1-528.e18. [PMID: 29410109 DOI: 10.1016/j.ajog.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications. OBJECTIVE The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and postpartum repair. STUDY DESIGN In all, 68 healthy pregnant women were recruited. Raman spectra were measured from the cervix of each patient monthly in the first and second trimesters, weekly in the third trimester, and at the 6-week postpartum visit. Raman spectra were measured using an in vivo Raman system with an optical fiber probe to excite the tissue with 785 nm light. A spectral model was developed to highlight spectral regions that undergo the most changes throughout pregnancy, which were subsequently used for identifying Raman peaks for further analysis. These peaks were analyzed longitudinally to determine if they underwent significant changes over the course of pregnancy (P < .05). Finally, 6 individual components that comprise key biochemical constituents of the human cervix were measured to extract their contributions in spectral changes throughout pregnancy using a linear combination method. Patient factors including body mass index and parity were included as variables in these analyses. RESULTS Raman peaks indicative of extracellular matrix proteins (1248 and 1254 cm-1) significantly decreased (P < .05), while peaks corresponding to blood (1233 and 1563 cm-1) significantly increased (P < .0005) in a linear manner throughout pregnancy. In the postpartum cervix, significant increases in peaks corresponding to actin (1003, 1339, and 1657 cm-1) and cholesterol (1447 cm-1) were observed when compared to late gestation, while signatures from blood significantly decreased. Postpartum actin signals were significantly higher than early pregnancy, whereas extracellular matrix proteins and water signals were significantly lower than early weeks of gestation. Parity had a significant effect on blood and extracellular matrix protein signals, with nulliparous patients having significant increases in blood signals throughout pregnancy, and higher extracellular matrix protein signals in early pregnancy compared to patients with prior pregnancies. Body mass index significantly affected actin signal contribution, with low body mass index patients showing decreasing actin contribution throughout pregnancy and high body mass index patients demonstrating increasing actin signals. CONCLUSION Raman spectroscopy was successfully used to biochemically monitor cervical remodeling in pregnant women during prenatal visits. This foundational study has demonstrated sensitivity to known biochemical dynamics that occur during cervical remodeling, and identified patient variables that have significant effects on Raman spectra throughout pregnancy. Raman spectroscopy has the potential to improve our understanding of cervical maturation, and be used as a noninvasive preterm birth risk assessment tool to reduce the incidence, morbidity, and mortality caused by preterm birth.
Collapse
|
47
|
Hao J, Yao W, Harris WBR, Vink JY, Myers KM, Donnelly E. Characterization of the collagen microstructural organization of human cervical tissue. Reproduction 2018; 156:71-79. [PMID: 29712877 DOI: 10.1530/rep-17-0763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/30/2018] [Indexed: 11/08/2022]
Abstract
The cervix shortens and softens as its collagen microstructure remodels in preparation for birth. Altered cervical tissue collagen microstructure can contribute to a mechanically weak cervix and premature cervical dilation and delivery. To investigate the local microstructural changes associated with anatomic location and pregnancy, we used second-harmonic generation microscopy to quantify the orientation and spatial distribution of collagen throughout cervical tissue from 4 pregnant and 14 non-pregnant women. Across patients, the alignment and concentration of collagen within the cervix was more variable near the internal os and less variable near the external os. Across anatomic locations, the spatial distribution of collagen within a radial zone adjacent to the inner canal of the cervix was more homogeneous than that of a region comprising the middle and outer radial zones. Two regions with different collagen distribution characteristics were found. The anterior and posterior sections in the outer radial zone were characterized by greater spatial heterogeneity of collagen than that of the rest of the sections. Our findings suggest that the microstructural alignment and distribution of collagen varies with anatomic location within the human cervix. These observed differences in collagen microstructural alignment may reflect local anatomic differences in cervical mechanical loading and function. Our study deepens the understanding of specific microstructural cervical changes in pregnancy and informs investigations of potential mechanisms for normal and premature cervical remodeling.
Collapse
Affiliation(s)
- Jia Hao
- Department of Materials Science and EngineeringCornell University, Ithaca, New York, USA
| | - Wang Yao
- Department of Mechanical EngineeringColumbia University, New York, New York, USA
| | - W B Ryan Harris
- Department of Materials Science and EngineeringCornell University, Ithaca, New York, USA
| | - Joy Y Vink
- Department of Obstetrics and GynecologyColumbia University Medical Center, New York, New York, USA
| | - Kristin M Myers
- Department of Mechanical EngineeringColumbia University, New York, New York, USA
| | - Eve Donnelly
- Department of Materials Science and EngineeringCornell University, Ithaca, New York, USA .,Research DivisionHospital for Special Surgery, New York, New York, USA
| |
Collapse
|
48
|
Torquato BGS, Oliveira MS, Juliano GR, Aguiar LS, Juliano GR, Silveira LMD, Espíndula AP, Oliveira LF, Cavellani CL, Oliveira FAD, Teixeira VDPA, Ferraz MLF. Analysis of the collagen fibers on autopsied patients’ uterus with the Acquired Immunodeficiency Syndrome. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2018. [DOI: 10.1590/1806-93042018000100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Objectives: to compare the percentage of collagen fibers in the autopsied women’s uterine body and cervix with and without the Acquired Immunodeficiency Syndrome (Aids). Methods: 30 autopsied women’s medical files were selected from 1988 to 2013. 30 fragments of the uterine body and 30 cervix were collected and then divided into two groups, 15 with Aids and 15 without, The quantification of the collagen fibers of the uterine body and cervix was performed on slides stained with picrosirius, using the KS-300® system. Results: the percentage of collagen fibers was lower for cervix (U=336544; p=0.001) and higher for the uterine body (U=308726,5; p=0.004) in the retroviral group when compared to the group without the disease. The percentage was higher for cervix than the uterine body in the group with Aids (t=0,4793; p=0.0031). the same result was found in the group without Aids (t=2,397; p=0.0637). Conclusions: the increase in the percentage of collagen fibers in the uterine body of women with Aids’ indicates an immune response for viral infection and reveals a failure in keeping the infection restricted to the cervix. The interpretation of the histochemical and morphometric parameters can be useful in the diagnosis associated to HIV infection, contributing for clinical improvement and life expectancy.
Collapse
|
49
|
Carlson LC, Hall TJ, Rosado-Mendez IM, Palmeri ML, Feltovich H. Detection of Changes in Cervical Softness Using Shear Wave Speed in Early versus Late Pregnancy: An in Vivo Cross-Sectional Study. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:515-521. [PMID: 29246767 PMCID: PMC5801067 DOI: 10.1016/j.ultrasmedbio.2017.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 05/13/2023]
Abstract
The aim of this study was to assess the ability of shear wave elasticity imaging (SWEI) to detect changes in cervical softness between early and late pregnancy. Using a cross-sectional study design, shear wave speed (SWS) measurements were obtained from women in the first trimester (5-14 wk of gestation) and compared with estimates from a previous study of women at term (37-41 wk). Two sets of five SWS measurements were made using commercial SWEI applications on an ultrasound system equipped with a prototype catheter transducer (128 elements, 3-mm diameter, 14-mm aperture). Average SWS estimates were 4.42 ± 0.32 m/s (n = 12) for the first trimester and 2.13 ± 0.66 m/s (n = 18) for the third trimester (p <0.0001). The area under the curve was 0.95 (95% confidence interval: 0.82-0.99) with a sensitivity and specificity of 83%. SWS estimates indicated that the third-trimester cervix is significantly softer than the first-trimester cervix. SWEI methods may be promising for assessing changes in cervical softness.
Collapse
Affiliation(s)
- Lindsey C Carlson
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Timothy J Hall
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ivan M Rosado-Mendez
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark L Palmeri
- Biomedical Engineering Department, Duke University, Durham, North Carolina, USA
| | - Helen Feltovich
- Medical Physics Department, University of Wisconsin-Madison, Madison, Wisconsin, USA; Maternal Fetal Medicine Department, Intermountain Healthcare, Provo, Utah, USA
| |
Collapse
|
50
|
Chue-Sang J, Bai Y, Stoff S, Gonzalez M, Holness N, Gomes J, Jung R, Gandjbakhche A, Chernomordik VV, Ramella-Roman JC. Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 28853246 PMCID: PMC5997002 DOI: 10.1117/1.jbo.22.8.086010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/24/2017] [Indexed: 05/20/2023]
Abstract
Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities.
Collapse
Affiliation(s)
- Joseph Chue-Sang
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Yuqiang Bai
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Susan Stoff
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Mariacarla Gonzalez
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Nola Holness
- Florida International University, Nicole Wertheim College of Nursing and Health Sciences, Miami, Florida, United States
| | - Jefferson Gomes
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Ranu Jung
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, United States
| | - Viktor V. Chernomordik
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, United States
| | - Jessica C. Ramella-Roman
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
- Florida International University, Herbert Wertheim College of Medicine, Miami, Florida, United States
- Address all correspondence to: Jessica C. Ramella-Roman, E-mail:
| |
Collapse
|